期刊文献+

人工神经网络对VOCs的自动识别 被引量:10

Automated Recognition of VOCs Using Artificial Neural Networks
下载PDF
导出
摘要 利用人工神经网络(ANN)对严重混叠的傅里叶变换红外光谱图进行了定性和定量解析。通过大量模拟数据训练神经网络后,引用了新的评价标准———逼近度来选择最优网络模型。利用此优化网络对两类光谱图进行了解析,考察了网络的泛化能力。结果表明:该网络不仅能够对两组分同时存在时的样本进行准确解析,而且对于未知单组分光谱图,也能够进行准确鉴别和定量分析。可见,该研究为人工神经网络在单组分和多组分未知物的定性和定量分析方面提供了一种新思路。 Quantitative analysis of FTIR spectra, which are seriously overlapped in the spectral bands, was studied by artificial neural networks. The optimum network was chosen by a new criterion, i.e. the degree of approximation. After the network was established, two kinds of spectra were re.solved. It was demonstrated that accurate results could be obtained when two components were both included. In addition, the unknown spectrum could be identified and quantified. It was showed that the artificial neural network has excellent non-linear ability of solution. Meanwhile, the method provides an efficient approach to the identification and quantification of the unknown samples.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2006年第1期51-53,共3页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金(20175008) 中国博士后科学基金 南京理工大学青年学者基金(Njust200303)资助项目
关键词 傅里叶变换红外光潜 人工神经网络 多组分分析 未知物鉴定 FTIR Artificial neural network Multi-component analysis Identification
  • 相关文献

参考文献12

  • 1Marshall T L, Chaffin C T, Hammaker R M. Environ. Sei. Tech., 1994, 28: 224A.
  • 2Newrnan AR. Anal. Chem., 1997, 69: 43A.
  • 3Wang Junde, Clench M R, Wang Tianshu, et al. Spectrose. Lett., 1997, 30: 99.
  • 4刘芳,王俊德.遗传算法用于傅里叶变换红外光谱的定量解析[J].光谱学与光谱分析,2001,21(5):607-610. 被引量:9
  • 5Gu Binghe, Wang Junde, Wang Lianjun, et al. Speetrose. Lett., 1998, 31: 1451.
  • 6Li Yan, Wang Junde, Chen Zuoru, et al. Anal. Lett., 2001, 34(12): 2203.
  • 7Richardson R L, Yang H S, Griffiths P R. Appl. Spectrosc., 1998, 52: 565.
  • 8Hadjiiski L, Geladi P, Hopke P. Chem. Intell. Lab. Syst., 1999, 49: 91.
  • 9ZHANG Li-ming(张立明).The Model of Artificial Neural Network and Its Application(人工神经网络的模型及其应用).上海:复旦大学出版社,1993.34.
  • 10ZHU Er-yi, YANG Peng-yuan(朱尔一,杨芃原).Chemometrics and Its Application(化学计量学技术及应用).北京:科学出版社,2003.92.

二级参考文献6

共引文献34

同被引文献127

引证文献10

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部