期刊文献+

振荡热管内的振荡及传热传质特性 被引量:15

Oscillating flow and heat and mass transfer characteristics in oscillating heat pipes
下载PDF
导出
摘要 通过分析振荡热管内部气液两相系统的受力和传热传质过程,对振荡热管进行了合理的简化和假设,建立了详细的理论模型.以n型单液塞振荡热管为例,采用显示差分法求解建立的控制方程,并预测传热传质特性和液塞的振荡行为,结果显示:液塞在毛细管路内的运动既有宏观振荡又有局部振荡,振荡的幅度和频率在增大和减小中交替变化,没有固定的周期;液塞两侧气泡间的压差是其振荡的主要驱动力,当振荡热管非水平工作时,需考虑重力的影响,与其他力相比,毛细阻力对液塞振荡的影响可以忽略;液膜短时间内的干涸是诱发新一轮振荡以及强化传热的源动力. The oscillating heat pipes (OHPs) are complex two-phase systems which have multiple parameters and multi-disciplinary physics, and investigations on OHPs are still at a primary stage. In this paper, a detailed theoretical model was developed by analyzing the forces and the heat and mass transfer in the systems. An n-shaped OHP with a single water plug and two vapor bubbles was investigated, and the governing equations were solved by using an explicit finite difference scheme to simulate the oscillating behavior of the liquid plug and heat and mass transfer characteristics. The results showed that the overall and local oscillations and the sudden increase and subsequent decrease in amplitude and frequency were the typical behavior of the liquid plug. The pressure difference between two bubbles was the main driving force of the oscillating plug. Capillary force could be neglected in comparison with other forces, and the plug gravity must be considered when OHP did not work horizontally. Instantaneous dry-up of the liquid film could enhance the amplitude and frequency of plug velocity and the overall heat transfer rate.
出处 《化工学报》 EI CAS CSCD 北大核心 2005年第12期2265-2270,共6页 CIESC Journal
基金 江苏省教育厅自然科学基金项目(02KJB470001).~~
关键词 振荡热管 物理建模 振荡流 传热传质 oscillating heat pipe physical modeling oscillating flow heat and mass transfer
  • 相关文献

参考文献4

二级参考文献39

  • 1杨蔚原,张正芳,马同泽.脉动热管运行的可视化实验研究[J].工程热物理学报,2001,22(S1):117-120. 被引量:32
  • 2马永锡,张红,庄骏.振荡热管——一种新型独特的传热元件[J].化工进展,2004,23(9):1008-1013. 被引量:22
  • 3Akachi H, Polasek F, Stulc P. Pulsating Heat Pipe, Heat Pipe Technology: Theory, Application and Propspeets. In:Proceedings of 5th International; Heat Pipe Symposium. Oxford:Oxford Pergamon, 1997. 208-217.
  • 4Khandekar S, Schneider M, Gmll M. Mathematical Modeling of Pulsating Heat Pipe: State of the Art and Future Challenges. In:Proceedings of 5th ISHMT/ASME International Heat and Mass Transfer Conference. Calcutta, India, 2002. 15-19.
  • 5Pacheco-Vega A, Sen M, Yang K T. Neural Network Analysis of Fin-tube Refrigerating Heat Exchanger with Limited Experimental Data. International Journal of Heat and MassTransfer, 2001, 44:763-769.
  • 6Kalogirou S A, Bojic M. Artificial Neural Networks for the Prediction of the Energy Consumption of a Passive Solar Building.Energy, 2000, 2S: 479-491.
  • 7Akachi H, Polasek F. Pulsating heat pipes [C]. //Proceedings of the 5th International Heat Pipe Symposium Melbourne: 5th International Heat Pipe Sympojium,1996, 208-217.
  • 8KimJS, ImYB, KimYS, etal. Development of the under-floor heating system using oscillating capillary tube heat pipe [J]. Journal of the Japan Association for Heat Pipes, 2003, 21(4): 1-8.
  • 9Charoensawan P, Khandekar S, Groll M, et al. Closed loop pulsating heat pipes-part A: Parametric experimental investigations [J]. Applied Thermal Engineering, 2003,23(16): 2009-2020.
  • 10Charoensawan P, Khandekar S, Terdtoon P. Effect of inclination angles on heat transfer characteristics of closed-loop oscillating heat pipe at normal operating condition [C]. // Proceedings of 12th International Heat Pipe Conference. Moscow: 12th International Heat Pipe Conference, 2002.

共引文献72

同被引文献166

引证文献15

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部