期刊文献+

基于自适应小波神经网络的数据挖掘方法研究——对我国石油产量的预测分析 被引量:4

Research of Data Mining Method Based on Self-adaptation Wavelet Neural Network-Prediction Analysis of Petroleum Yield
下载PDF
导出
摘要 小波神经网络是近年来在小波分析研究获得突破性进展基础上提出的一种前馈型网络,文章将小波与神经网络相结合,提出了一种基于自适应小波神经网络(SAWNN,self-adaptation wavelet neural network)的数据挖掘方法,并构造了数据挖掘过程的机器学习机制,以提高对问题的处理能力。文章将所构造的自适应小波神经网络用于石油产量的建模预测研究,实证结果表明此预测模型不仅是有效的,而且是可行的。 Wavelet neural network, which is based on wavelet analysis, is sort of feed forward network developed in recent years. In this paper, combining the theories of wavelet and neural network together, a new method of the self-adaptation wavelet neural network for data mining is proposed and a machine study mechanism is then constructed in order to improve the capability of the former in tackling problems. Later on, the self-adaptation wavelet neural network is used to model and predict the petroleum yield, and the following results successfully prove that such an application is effective and feasible.
出处 《财经研究》 CSSCI 北大核心 2006年第3期114-120,共7页 Journal of Finance and Economics
关键词 石油产量 预测研究 自适应小波神经网络 petroleum yield prediction study self-adaptation wavelet neural network
  • 相关文献

参考文献10

  • 1B Delyon A, Juditsky A. Benveniste, accuracy analysis for wavelet approximations,IEEE trans[J]. On Neural Networks, 1995,6(2).332-358.
  • 2Yongyong He, Fulei Chu, Binglin Zhong. A hierarchical evolutionary algorithm for constructing and training wavelet networks[J]. Neural Comput & Applic, 2002,10. 336-357.
  • 3Chris C Holmes, Bani K. Mallick, bayesian wavelet networks for nonparametric regression[J]. IEEE Trans. On Neural Networks, 2000,11(1):27-35.
  • 4Jun Zhang, Gilbert G Walter, Yubo Miao, Wan Ngai Wayne Lee. Wavelet neural networks for function learning[J]. IEEE Trans. Signal Processing, 1995,43 (6) : 1485-1496.
  • 5Y C Huang. Fault identification of power transformers using genetic-based wavelet networks[J]. IEE Proc-Sci. Meas. Technol, 2003,150 (1) : 25-30.
  • 6Wei-ming Wang, Chao-ming Huang. An evolutionary based wavelet network for realtime power dispatch[J]. Electric Power Components and Systems, 2002, (30).1151-1166.
  • 7Takashi Samatsu, Eiji Uchino, Takeshi Yamakawa. Feature extraction of a vectorcar-diogram by employing a wavelet network guaranteeing a global minimum[J]. Journal of Intelligent and Fuzzy Systems, 2000, (8) : 221-227.
  • 8G P Liu S A, Billings V, Kadirkamanathan. Nonlinear system identification using wavelet networks[J]. International Journal of Systems Science, 2000,3(12):1531-1542.
  • 9Leonardo M Reyneri. Unification of neural and wavelet networks and fuzzy systems,IEEE tmns[J]. On Neural Networks, 1999,10(4) .801-814.
  • 10Stephen A Billings, Hua-Liang Wei. A new class of wavelet networks for nonlinear system identification, IEEE Trans[J]. On Neural Networks, 2005,16(4):862-874.

同被引文献58

引证文献4

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部