期刊文献+

一种新的定性定量故障诊断理论 被引量:3

A New Qualitative-Quantitative Fault Diagnosis Theory
下载PDF
导出
摘要 根据系统的特征进行故障诊断往往因为故障的信息不足而难以确诊。将人工智能的思想引入故障诊断的理论之中以克服信息的不足和有效地利用专家知识,是一种解决故障诊断难题的有效方法。结合灰色定性仿真理论和R e iter R的基于第一原理的故障诊断理论的定性定量故障诊断理论被提出,它根据系统的现实状态与用灰色定性仿真预测的系统的状态的差异判断系统是否发生了故障,若故障出现,通过故障状态与故障模型的匹配确定故障的类型。这种方法能有效地结合的定性信息和定量信息,根据系统有限的定量信息建立其变量间的定性约束并将其应用于故障诊断。 It is difficult to diagnose a fault based on the system characters since the information is lacking. To introduce artificial intelligence into fault diagnosis for overcoming the scanty information and utilizing expert knowledge is an effective method for solving the problem. A qualitative - quantitative fault diagnosis theory, which combines Grey Qualitative Simulation (GQSIM) with R Reiter's fault diagnosis theory based on the first principle, is advanced in this paper, and it judges whether there exists a fault in a system by the difference between the real state of system and forecasted state by GQSIM. If there exists a fault in the system, the kind of fault is differentiated via matching the states and the models of fault. This method combines effectively the qualitative information with quantitative information, and it can set up the qualitative restrictions among the variables of system according to the limited quantitative information and applies the restrictions to diagnose a fault.
作者 黄元亮
出处 《计算机仿真》 CSCD 2006年第2期146-149,共4页 Computer Simulation
关键词 故障诊断 灰色定性仿真 概率灰数 差异榆测 Fauh diagnosis GQSIM Probability gray number Difference test
  • 相关文献

参考文献8

  • 1D Dviraj,B J Kuipers.Process Monitoring and Diagnosis[J].IEEE Expert,1991,6(3):67-75.
  • 2I B Ozyurt,L O Hall,A K Sunol.SQFDiag:Semiquantitative Model-Based Fault Monitoring and Diafnosis via Episodic Fuzzy Rules[J].IEEE Transactions on systems,man,and cybernetics-part A:systems and humans,1999,3(29):294-306.
  • 3Y L Huang,Z H Chen,J Q Duan.Grey qualitative simulation[J].Journal of Grey system,2004,16 (1):5-20.
  • 4R Reiter.A Theory of Diagnosis from First Principles[J].Artificial Intelligence,1987,32:57-95.
  • 5B Kuipers.Qualitative Simulation[J].Artificial Intelligence,1986,9:289-338.
  • 6H Kay,L Ungar.Deriving Monotonic Function Envelopes from Observations[C].In:Working Pagers from the Seventh International Workshop on Qualitative Reasoning about Physical System (QR-93),Orcas Island,WA,1993.117-123.
  • 7夏常弟,万百五.连续系统的一种新颖故障诊断方法[J].控制与决策,1998,13(4):322-326. 被引量:4
  • 8王文辉,周东华.基于定性和半定性方法的故障检测与诊断技术[J].控制理论与应用,2002,19(5):653-659. 被引量:35

二级参考文献80

  • 1白方周,霍鑫,鲍忠贵.动态系统的定性推理:定性模型的建立与定性仿真方法[J].信息与控制,1995,24(4):222-229. 被引量:8
  • 2Iri M, Aoki K, O'Shima E, et al. An algorithm for diagnosis of system failures in the chemical process [ J]. Computers and Chemical Engineering, 1979,3(1/4) :489 - 493
  • 3Chang C C. On-line fault diagnosis using improved SDG [D].Taipei, Taiwan: National Taiwan Institute of Technology, 1988
  • 4Chang C C, Yu C C. On-line fault diagnosis using the signed directed graph [ J ]. Industrial & Engineering Chemistry Research,1990,29(7): 1290 - 1299
  • 5Zhuang Z, Frank P M. Observation filtering: from qualitative simulation to qualitative observer [A]. 10th International Workshop on Qualitative Reasoning [C]. California, USA, 1996,299-306
  • 6Zhuang Z, Frank P M. Qualitative observer and its application to fault diagnosis [ J ]. Journal of Systems and Control Engineering (Proc. of Institution of Mechanical Engineers), 1997,211(4):253-262
  • 7Zhuang Z, Frank P M. A fault detection scheme based on stochastic qualitative modeling [A]. IFAC World Congress'99 [C]. Beijing,China, 1999,527 - 532
  • 8Lichtenberg G, Lunze J. Observation of qualitative states by means of a qualitative model [J]. Intemational Joumal of Control, 1997,66(6): 885 - 903
  • 9Lunze J, Schroder J. Application of qualitative observation and prediction to a neutralisation process [A]. IFAC World Congress' 99[C]. Beijing, China,1999,49- 54
  • 10Weld D. Comparative analysis [J]. Artificial Intelligence,1988,36(3) :333 - 373

共引文献37

同被引文献45

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部