期刊文献+

满意特征选择及其应用 被引量:5

Satisfactory feature selection and its applications
下载PDF
导出
摘要 实际应用中的特征选择是一个满意优化问题.针对已有特征选择方法较少考虑特征获取代价和特征集维数的自动确定问题,提出一种满意特征选择方法(SFSM),将样本分类性能、特征集维数和特征提取复杂性等多种因素综合考虑.给出特征满意度和特征集满意度定义,设计出满意度函数,导出满意特征集评价准则,详细描述了特征选择算法.雷达辐射源信号特征选择与识别的实验结果显示,SFSM在计算效率和选出特征的质量方面明显优于顺序前进法、新特征选择法和多目标遗传算法.证实了SFSM的有效性和实用性. Feature selection is essentially a satisfactory optimization problem in engineering applications. Most of the existing feature selection methods did not consider the cost of feature extraction and automatic decision of the dimension of feature subset. In this paper, a novel approach called satisfactory feature selection method (SFSM) is proposed. SFSM considers compromisingly classification performance of feature samples, the dimension of feature set and the complexity of feature extraction. Feature satisfactory rate and feature set satisfactory rate are defined. Several satisfactory rate functions are designed. Satisfactory feature set evaluation criterion is given in a mathematical way. Satisfactory feature selection algorithm is described in detail. Experimental results of radar emitter signal feature selection and recognition show that SFSM is superior to sequential forward selection using distance criterion, new feature selection method and multi-objective genetic algorithm in computing efficiency and feature qualities. Hence, the validity and applicability of the proposed method are verified.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第1期19-24,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(60572143) 国家电子对抗重点实验室基金项目(NEWL51435QT220401) 西南交通大学博士生创新基金资助项目(2003-12) 教育部骨干教师资助计划项目(教技司[2000]65号)
关键词 优化 满意优化 特征选择 识别 optimization satisfactory optimization feature selection recognition
  • 相关文献

参考文献12

  • 1COVER T M,VANCOMPENHON J M.On the possible ordering in the measurement selection problem [ J ].IEEE Trans on Systems,Man and Cybernetics,1977,7(9):657-667.
  • 2MOLINA LUIS-CARLOS,BELANCHE LLUFS,NEBOT ANGELA.Feature selection algorithms:a survey and experimental evaluation [C]//Proc of Int Conf on Data Mining.Piscataway:IEEE Press,2002:306-313.
  • 3吕铁军,王河,肖先赐.新特征选择方法下的信号调制识别[J].电子与信息学报,2002,24(5):661-666. 被引量:48
  • 4靳蕃,胡飞.模糊神经计算的满意输出原理[J].铁道学报,1996,18(2):102-107. 被引量:4
  • 5席裕庚.复杂工业过程的满意控制[J].信息与控制,1995,24(1):14-20. 被引量:47
  • 6JIN Weidong,LI Chongwei,HU Fei,et al.A study on intelligent computation of methods of optimization operation for train[C]//Proc of Int Workshop on Autonomous Decentralized System.Los Alamitos:IEEE Press,2000:227-230.
  • 7ZHAO Duo.The application of multi-criterion satisfactory optimization in fuzzy controller design [ C ]//Proc of 2nd Int Workshop on Autonomous Decentralized System.Los Alamitos:IEEE Press,2002:162-167.
  • 8张葛祥,金炜东,胡来招.多变量系统控制器的参数满意优化设计[J].控制理论与应用,2004,21(3):362-366. 被引量:15
  • 9MARSEGUERRA M,ZIO E,PODOFILINI L.Optimal reliability availability of uncertain systems via multi-objective genetic algorithms[ J ].IEEE Trans on Reliability,2004,53(3):424-434.
  • 10OSMAN M S,ABO-SINNA M A,Mousa A A.An effective gentic algorithm approach to multiobjective routing problems (MORPs) [J].Applied Mathematics and Computation,2005,163(2):769-781.

二级参考文献22

  • 1靳蕃,IEEE world congress on computational intelligence,1994年
  • 2何新贵,模糊数据库系统,1994年
  • 3胡飞,神经网络理论及应用.’94最新进展文集,1994年
  • 4靳蕃,中国神经网络1993年学术大会论文集,1993年
  • 5胡思继,铁道学报,1993年,15卷,1期
  • 6谢维信,电子学报,1989年,17卷,2期
  • 7任平,模糊数学,1983年,4期
  • 8JIN Weidong,ZHAO Duo,LI Gang.The application of multi-criterion satisfactory optimization in FIR digital filter design [C]// Proc of 2000 Int Workshop on Autonomous Decentralized System.Los Alamitos:IEEE Press,2000:227-230.
  • 9梁任秋 赵松 唐悦.二级倒立摆的数字控制器设计[J].控制理论与应用,1987,4(1):115-123.
  • 10HABIB Y,SADIQ M S,HAKIM A.Evolutionary algorithms,simulated annealing and tabu search:a comparative study [J].Engineering Application of Artificial Intellegence,2001,14(2):167-181.

共引文献118

同被引文献31

  • 1肖晋宇,谢小荣,胡志祥,韩英铎.电力系统低频振荡在线辨识的改进Prony算法[J].清华大学学报(自然科学版),2004,44(7):883-887. 被引量:110
  • 2邢桂华,朱庆保.基于模拟退火遗传算法的RBF网络的优化[J].微电子学与计算机,2005,22(7):174-177. 被引量:3
  • 3王娟,慈林林,姚康泽.特征选择方法综述[J].计算机工程与科学,2005,27(12):68-71. 被引量:64
  • 4Kakimoto Naoto, Ohnogi Yukio, Matsuda Hisao, et al. Low Frequency Oscillation and Field Tests on Power System Stabilizer[A]. in: Electrical Engineering in Japan[C]. 1987.27-35.
  • 5Amano M, Watanabe M, Banjo M. Self-testing and Self-tuning of Power System Stabilizers Using Prony Analysis[A]. in: IEEE Engineering Society, Winter Meeting[C]. 1999. 655-660.
  • 6Pierre J W, Trudnowski D J, Donnelly M K. Initial Results in Electromechanical Mode Identification from Ambient Data[J]. IEEE Trans on Power Systems, 1997, 12(3): 1245-1250.
  • 7Wies R W, Pierre J W, Trtmdnowski D J. Use of ARMA block Processing for Estimating Stationary Low-frequency Electromechanical Modes of Power Systems[J]. IEEE Trans on Power Systems, 2003, 18(1): 167-173.
  • 8Duin R P W, Juszczak P, Paclik P, et al. A Matlab Toolbox for Pattern Recognition[J]. Delft University of Technology, 2007.
  • 9Kohavi, Ron. A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model Selection[A]. in: Proceeding of the 14^th International Joint Conference on Artificial Intelligence[C], 1995.1137- 1143.
  • 10Sakawa M.Optimal reliablity design of a series-parallel system by large-scale multi-objective optimization method[J].IEEE Trans.Reliability,1981,30:173-174

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部