摘要
采用基于交错网格的有限体积法(FVM)离散了4大方程,给出了能量方程的全三维离散格式。运用SIMPLE算法求解了矩形截面流道内熔体的速度场和压力场,通过耦合动量方程和能量方程,进而得到整个机头流道内温度的分布。计算中采用了Carreau流变模型,并给出了作为温度函数的流动指数n的解析表达式。模拟结果表明:在入口区,熔体从近壁面区域向流道的中心区域汇集,进入全展流区后,熔体的流场不再变化;熔体内温度分布较为复杂,影响因素众多。
The FVM based on a staggered grid is adopted to derive the discretized forms of the continuity,momentum,constitutive and energy equations. And then the SIMPLE algorithm is used to calculate the velocity and pressure fields. The temperature distribution in the runner is demonstrated by coupling the momentum equation and energy equation. Here the Carreau model is employed and analytical expression of the flow index is presented. The results of simulation illustrate that in the region of entrance,the melt flows from the die wall to the center of the die. While,once entering the developed region,the flow field is steady. The temperature distribution in runner is complex because of the numerous effect factors.
出处
《塑料》
CAS
CSCD
北大核心
2006年第1期73-78,53,共7页
Plastics
关键词
三维非等温
有限体积法
交错网格
数值模拟
3-D non-isothermal
finite volume method
staggered grid
numerical simulation