期刊文献+

基于模糊聚类和遗传算法的具备解释性和精确性的模糊分类系统设计 被引量:8

Design of Interpretable and Precise Fuzzy Classification System Based on Fuzzy Clustering and Genetic Algorithm
下载PDF
导出
摘要 提出一种基于模糊聚类和遗传算法的模糊分类系统的设计方法.首先定义了模糊分类系统的精确性指标,给出解释性的必要条件.然后利用聚类有效性分析确定模糊规则数目,利用模糊聚类算法辨识初始的模糊分类系统.随后利用模糊集合相似性分析与融合对初始的模糊分类系统进行约简,提高其解释性;利用遗传算法对约简后的模糊分类系统进行优化,提高其精确性,该过程反复迭代直至满足中止条件.最后利用该方法进行Iris数据样本分类,仿真结果验证了该方法的有效性. An approach of constructing interpretable and precise fuzzy classification system based on fuzzy clustering and genetic algorithm is proposed. First, the precision index is defined, and the necessary conditions of interpretability are analyzed. Second, the number of fuzzy rules is determined by cluster validity indices, and the initial fuzzy classification system is identified using a fuzzy clustering algorithm. Subsequently, the method of merging similar fuzzy sets is used to enhance the interpretability of the initial model. A genetic algorithm is used to improve the precision of the model. The process continues iteratively until the stop criteria are satisfied. The proposed approach is applied to the Iris benchmark classification problem, and the results show its validity.
出处 《电子学报》 EI CAS CSCD 北大核心 2006年第1期83-88,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60332020) 南京理工大学科研发展基金资助计划项目(2005)
关键词 模糊分类系统 模糊聚类 遗传算法 解释性 精确性 fuzzy classification system fuzzy clustering genetic algorithm interpretability precision
  • 相关文献

参考文献20

  • 1Kuncheva L I.Fuzzy Classifier Design (Studies in Fuzziness and Soft Computing)[M].New York:Heidelberg,2000.
  • 2Abe S,Thawonmas R.A fuzzy classifier with ellipsoidal regions[J].IEEE Trans.Fuzzy Systems,1997,5(3):358-368.
  • 3Shi Y,Eberhart R,Chen Y.Implementation of evolutionary fuzzy system[J].IEEE Trans.Fuzzy Systems,1999,7(2):109-119.
  • 4Castellano G,Fanelli1 A M.Modeling fuzzy classification systems with compact rule base[A].1999 International Conference on Computational Intelligence for Modeling,Control and Automation[C].Vienna,Austria:IOS Press,1999:287-292.
  • 5Jin Y.Advanced Fuzzy Systems Design and Applications[M].New York:Physical-Verl,2003.
  • 6Nauck D D.Fuzzy data analysis with NEFCLASS[J].International Journal of Approximate Reasoning,2003,32(2-3):103-130.
  • 7Ishibuchi H,Nakashima T,Murata T.Three-objective genetics-based machine learning for linguistic rule extraction[J].Information Sciences,2001,136(1-4):109-133.
  • 8Abonyi J,Roubos H,Szeifert F.Data-Driven generation of compact,Accurate,and linguistically sound fuzzy classifiers based on a decision tree initialization[J].International Journal of Approximate Reasoning,2003,32(1):1-21.
  • 9Chang X,Lilly J H.Evolutionary design of a fuzzy classifier from data[J].IEEE Trans System Man Cybernetic Part B,2004,34(4):1894-906.
  • 10Gustafson D,Kessel W.Fuzzy clustering with a fuzzy covariance matrix[A].Proc of IEEE Conf on Decision and Control[C].San Diego,USA:IEEE Press,1979.761-766.

二级参考文献3

  • 1Hisao Ishibuchi,Ken Nozaki,Naohisa Yamamoto.Distributed representation of fuzzy rules and its application to pattern classification[].Fuzzy Sets and Systems.1992
  • 2Jyh Shing Roger Jang.ANFIS: Adaptive-networkbased fuzzy inference system[].IEEE Transactions on Systems Man and Cybernetics.1993
  • 3Hisao Ishibuchi,Ken Nozaki,Naohisa Yamamoto et al.Selecting fuzzy If -Then rules for classification problems using genetic algorithms[].IEEE Transactions on Fuzzy Systems.1995

共引文献20

同被引文献84

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部