期刊文献+

图像纹理的灰度共生矩阵计算问题的分析 被引量:203

Research on Computation of GLCM of Image Texture
下载PDF
导出
摘要 图像的灰度共生矩阵(GLCM)已知被理论证明并且实验显示它在纹理分析中是一个很好的方法,广泛用于将灰度值转化为纹理信息.然而,由于GLCM是像素距离和角度的矩阵函数,因此完整的GLCM的计算,其参数的选取范围很广,这样GLCM的计算量很大,通常是不能这样用的.为了解决这个问题,本文应用马尔可夫链的性质,从理论上证明了GLCM的计算结果,当像素距离足够大的时候趋于一致性.这样只需较少的参数值就可以完整的描述图像的纹理特征.最后,通过对Brodatz纹理库中自然纹理图像和几幅SAR图像进行仿真,仿真结果验证了上述结论. The Gray Level Co-occurrence Matrix (GLCM) has been proved to be a promising method for image texture analysis. However, the parameters in computing the GLCM of an image can be selected from a wide range, which results in a large amount of computation to be needed and makes it difficult to analyze the image textures. To simplify the computation of GLCM, we analyze the computation of GLCM by using Markov Chain property. We prove that GLCM is independent of distance and angle when distance is large enough. According to our analysis, the computation of GLCM is simplified by reducing the number of selected values of distance and angle. Finally, we give simulation results on natural texture images and SAR images to validate the theoretical analysis.
出处 《电子学报》 EI CAS CSCD 北大核心 2006年第1期155-158,134,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.60133010)
关键词 灰度共生矩阵(GLCM) 纹理分析 马尔可夫链 合成孔径雷达(SAR) gray level co-occurrence matrix texture analysis markov chain synthetic aperture radar
  • 相关文献

参考文献11

  • 1J A Modestino,J Zhang.A markov random field model based approach to image interpretation[J].IEEE Tran On Pattern Analysis and Machine Intelligence,1992,14(6):606-615.
  • 2N Kamath,K.Sunil Kumar,U B Desai.Joint segmentation and image interpretation using hidden Markov models[A].Proc of the Int Conf on Pattern Recognition[C].Brisbane,Australia,1998,2:1840-1842.
  • 3Belhadj Ziad,Bouhlel Nizar,Sevestre Ghalila Sylvie,Boussema Mohamed Rached.Heterogeneous SAR Texture Characterization By Means Of Markov Random Fields[A].IEEE 2000 International Geoscience and Remote Sensing Symposium Proceedings (IGARSS′2000)[C].Honolulu Hawaii,2000,2:579-581.
  • 4Rupert D Paget.Nonparametric Markov Random Field Models for Natural Texture Images[D].The University of Queensland,1999.
  • 5S C Liew,H Lim,L K Kwoh,G K Tay.Texture analysis of SAR images[A].IEEE 1995 International Geoscience and Remote Sensing Symposium Proceedings (IGARSS′1995)[C].Firenze,Italy,1995,2:1412-1414.
  • 6Robert M Haralick,K Shanmugam,Its′hak Dinstein.Texture features for image classification[J].IEEE Trans on Systems,Man and Cybernetics,1973,3(6):610-621.
  • 7Dutra LV,R Huber.Feature extraction and selection for ERS-1/2 InSAR classification[J].International Journal of Remote Sensing,1999,20(5):993-1016.
  • 8Leen-Kiat Soh,Costas tsatsoulis.Segmentation of satellite imagery of natural scenes using data mining[J].IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):1086-1099.
  • 9John R Smith,Shih-Fu Chang.Automated binary texture feature sets for image retrieval[A].IEEE International.Conference on Acoustics,Speech,and Signal Processing[C].Atlanta,GA,USA,1996,4:2239-2242.
  • 10Robert M.Haralick K.Shanmugam,Its'hak Dinstein.Texture features for image classification[J].IEEE Trans On Sys,Man,and Cyb,1973,SMC-3(6):610-621.

同被引文献1836

引证文献203

二级引证文献1978

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部