期刊文献+

一种基于限制的PAM算法 被引量:5

A Constraint-based PAM Algorithm
下载PDF
导出
摘要 利用数据对象间的关联限制可以改善聚类算法的效果,但对于关联限制与K中心点算法的结合策略则少有研究。由此研究了关联限制与PAM算法的结合方法,提出了算法CPAM。首先基于限制找到一个合适的初始分隔;在接下来反复地调整中心点的过程中,也考虑到了所给限制。实验结果显示:CPAM可以有效地利用关联限制来提高一些实际数据集的准确率。 Instance-level constraints have shown to be useful to improve the performance of some existing clustering algorithms.There is yet little research on the approach of instance-level constraint-based K-median algorithm.An instance-level constralnt-based PAM algorithm CPAM is presented.h begins by finding an initial partition that is complying with the constraints.Then it does the replacement of a medoid by a nonmedoid iteratively,at all the time constraints will be taken into consideration.The test on three real datasets suggests that CPAM is effective in utilizing instance-level constraints in clustering some real datasets.
作者 何振峰
出处 《计算机工程与应用》 CSCD 北大核心 2006年第6期190-192,共3页 Computer Engineering and Applications
关键词 聚类分析 PAM算法 半监督学习 clustering analysis,PAM algorithm,semi-supervised learning
  • 相关文献

参考文献6

  • 1Wagstaff K,Cardie C.Clustering with instance-level constraints[C].In:Proc of the 17th International Conference on Machine Learning(ICML-2000),2000:1103~1110
  • 2Wagstaff K,Cardie C,Rogers S et al.Constrained K-means Clustering with Background Knowledge[C].In:Proc of the 18th International Conference on Machine Learning(ICML-2001),2001:577~584
  • 3Klein D,Kamvar S,Manning C.From Instance-level Constraints to Space-Level Constraints:Making the Most of Prior Knowledge in Data Clustering[C].In:Proc of the 19th International Conference on Machine Learning(ICML-2002),2002:307~314
  • 4何振峰,熊范纶.基于限制的分类效用及其应用[J].小型微型计算机系统,2004,25(12):2107-2111. 被引量:5
  • 5HANJ KAMBERM.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 6Ng R,Han J.Efficient and effective clustering method for spatial data mining[C].In:Proc of the 20th International Conference on Very large Data bases(VLDB'94),1994:144~155

二级参考文献6

  • 1Wagstaff K, Cardie C. Clustering with instance-level constraints[C].In:Proceedings of the Seventeenth International Conference on Machine Learning, 2000, 1103-1110.
  • 2Clark P, Niblett T. Induction in noisy domains[C]. In:Proc. 2nd European Machine Learning Conference (EWSL-87), 11-30.
  • 3Han J, Kambr M. Data mining: concepts and techniques (photocopy edition)[M]. Beijing:Higher Education Press, 2001.
  • 4Halkidi M, Batistakis Y, Vazirgiannis M. Cluster validity methods: part I[Z]. In:SIGMOD Record, 2002.
  • 5Mirkin B. Reinterpreting the category utility function[J]. Machine Learning, 2001(45):219-228.
  • 6Blake C, Merz J. UCI repository of machine learning databases[EB/OL]. http://www.ics.uci.edu/-mlearn/MLRepository.html

共引文献48

同被引文献47

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部