期刊文献+

基于前项不定长关联规则个性化推荐算法的研究 被引量:5

An Approach of Association Rules Mining with Based-Front Item of Unconfirm Length
下载PDF
导出
摘要 为了提高个性化推荐的质量,简化推荐规则生成过程中相关参数的设置,讨论了应用于个性化推荐中的关联规则的性质。提出了一种新的存储结构FSTree,并在这种存储结构上探讨了基于前项不定长的关联规则挖掘算法,通过实验证明了该算法的准确率和综合测度。 To improve quality of personalized recommendation and simplify the preference setup in generating recommendation rules,the characteristics of the association rule for personalized recommendation are discussed.We discuss a new storage structure named FSTree.Then based on FSTree,we discuss a Web usage mining with Based-Front Item of unconfirm Length,The theoretic analysis and experiment results on the algorithm show that the method has higher precision and F-measure of recommendation.
作者 冯珺 孙济庆
出处 《计算机工程与应用》 CSCD 北大核心 2006年第7期174-177,共4页 Computer Engineering and Applications
关键词 关联规则 FSTree结构 个性化 基于前项不定长规则 association rule,FSTree,personalization,Based-Front Item of unconfirm Length
  • 相关文献

参考文献4

  • 1Mobasher B,Dai HH,Luo T et al.Improving the effectiveness of collaborative filtering on anonymous Web usage data[R].Technical Report,01-005,2001
  • 2Mobasher B,Nakagawa M.Effective personalization based on association rule discovery form Web usage data[C].In:Chiang HL,Lim EP eds.The 3rd Int'l Workshop on Web Information and Data Management,New York:ACM Press,2001:9~15
  • 3Han JW,Pei J,Yin YW.Mining frequent patterns without candidate generation[C].In:Chen WD,Naughton JF,Bernstein PA eds.Proc of the 2000 ACM SIGMOD Int'l Conf on Management of Data,New York:ACM Press,2000:1~12
  • 4Mobasher B.Integrating Web usage and content mining for more effective personalization[C].In:Bauknecht K,Madria SK,Pernul G eds.Electronic Commerce and Web Techniques,the 1st Int'l Conf,ECWeb,Heidelberg:Springer-Verlag,2002:165~176

同被引文献30

引证文献5

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部