期刊文献+

MCNP-4C多粒子输运蒙特卡罗程序的MPI并行化 被引量:2

PARALLELIZATION OF MCNP-4C N-PARTICLE TRANSPORT MONTE CARLO CODE IN MPI
原文传递
导出
摘要 三维连续截面多粒子输运蒙特卡罗程序MCNP-4C-经过MPI并行改造,实现了MPI 并行化.采用分段随机数发生器,并行取得了与串行完全一致的结果,500个处理器的计算速度较串行提高了460倍,并行效率达到92%,可计算包括临界在内的多粒子输运问题. The parallelization of MCNP-4C Monte Carlo N-Particle Transport code system in MPI has been realized by modifying the serial code. The parallel results are the same with the serial results by using the segment random number generator. The parallel speed of 500-processors is 460-times faster than the serial speed. The parallel efficiency is up to 92%. The parallel code can simulate multi-particle transport problems that include the critical problems.
作者 邓力 张文勇
出处 《数值计算与计算机应用》 CSCD 2006年第1期52-59,共8页 Journal on Numerical Methods and Computer Applications
基金 计算物理实验室基金中国工程物理研究院基金NSAF联合基金(10576006)资助
关键词 粒子输运 蒙特卡罗 MPI并行化 分段随机数 particle transport, Monte Carlo, parallelization, MPI, segment random number
  • 相关文献

参考文献1

二级参考文献6

  • 1莫则尧 袁国兴.消息传递并行编程环境MPI[M].北京应用物理与计算数学研究所,1999..
  • 2王嘉谟 沈毅主编.并行计算方法:下册[M].科学出版社出版,1996..
  • 3R.P.Gardner and K.Verghese.Monte Carlo Nuclear Well Logging Benchmark Problems with Preliminary Intercomparison Results,Nucl.Geophys.5:4(1991),429--438.
  • 4J. F. Briesmeister (Editor), MCNP-A General Monte Carlo Code for N-Particle Transport Code,LA-12625-M (March, 1997).
  • 5Deng L. and Xie Z. S., Parallelization of MCNP Monte Carlo Neutron and Photon Transport Code in Parallel Virtual Machine and Message Passing Interface, J. Nucl. Sci. Tech., 36:7(1999),626-629.
  • 6邓力,黄正丰,许海燕,王瑞宏.蒙特卡罗中子-光子输运程序MCNP的并行化[J].数值计算与计算机应用,2001,22(4):262-266. 被引量:6

共引文献9

同被引文献7

  • 1邓力,许海燕,王瑞宏.确保并行与串行结果一致的蒙特卡罗并行随机数产生及应用[A].中国工程物理研究院科技年报().2001
  • 2Gong Chunye,Liu Jie,Chi Lihua,et al.Accelerating Pseudo-Random Number Generator for MCNP on GPU[].International Conference ofNumerical Analysis and Applied Mathematics.2010
  • 3P.L'Ecuyer."Uniform Random Number Generators"[].Proceedings of the Winter Simulation Conference.1998
  • 4Callegari S,Rovatti R,Setti G.Embeddable ADC-Based True Random Number Generator for Cryptographic Applications Exploiting Nonlinear Signal Processing and Chaos[].Signal Processing IEEE Transactionse.2005
  • 5Liang Y,Whitlock P A.A New Empirical Test for Parallel Pseudo_Random Number Generators[].Mathematics and Computers in Simulation.2001
  • 6Ashok Srinivasan,Michael Mascagni and David Cepedey.Testing parallel random number generators[].Parallel Computing.2003
  • 7张建中.随机数检验程序系统SUTEST[J].计算物理,1989,6(3):371-377. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部