期刊文献+

用奇异性的短期负荷预测混沌方法优化参数 被引量:2

Parameter Optimization Based on Singularity in Chaotic Forecasting of Short Term Load
下载PDF
导出
摘要 为优化电力系统短期负荷预测的混沌相空间重构的线性方法中的3个参数,以多元线性回归分析和矩阵计算的奇异性理论为基础,通过数值实验得到了优化的参数.发现首先应该根据取样序列的“平稳性”和“奇异性”,特别是避免“奇异性”来优选延迟时间;其次,根据嵌入窗长为24 h来优选嵌入相空间的维数;最后,按照嵌入相空间维数的3~5倍来选择邻近矢量的数目,而不是按照固定距离来选择邻近矢量数目. Based on the theories of multivariate linear regressive analysis and singularity in matrix calculation, three parameters in linear regression of chaotic phase-space reconstruction in short term load forecasting of power systems are optimized. The optimal parameters are gained through numerical experiments. Firstly, the delay time is optimized by the smoothness and singularity of the sampled series, especially avoiding the singularity in matrix calculation. Secondly, the dimensions of the embedding phase space are selected according to the length of the embedded window, 24 h. Lastly, the numbers of neighboring vectors are selected according to three to five times of the embedding dimensions, instead of the distance formerly.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2006年第3期334-337,共4页 Journal of Tianjin University(Science and Technology)
关键词 短期负荷预测 混沌 相空间重构 线性回归 延迟时间 奇异性 short term load forecasting chaos phase-space reconstruction linear regression delay time singularity
  • 相关文献

参考文献13

  • 1祝新全.改进和提高负荷预测工作的方法[J].河北电力技术,1998,17(4):58-60. 被引量:3
  • 2杨正瓴,张广涛,林孔元.时间序列法短期负荷预测准确度上限估计[J].电力系统及其自动化学报,2004,16(2):36-39. 被引量:33
  • 3康重庆,夏清,张伯明.电力系统负荷预测研究综述与发展方向的探讨[J].电力系统自动化,2004,28(17):1-11. 被引量:499
  • 4Jiang Chuanwen, Li Tao. Forecasting method study on chaotic load series with high embedded [ J ]. Energy Conversion and Management, 2005, 46(5):667-676.
  • 5Kawauchi Seiji, Sugihara Hiroaki, Sasaki Hiroshi. Development of very-short-term load forecasting based on chaos theory [ J ]. Electrical Engineering in Japan, 2004, 148 ( 2 ):55-63.
  • 6Tzafestas Spyros, Tzafestas Elpida. Computational intelligence techniques for short-term electric load forecasting[J].Journal of Intelligent and Robotic Systems, 2001, 31 (1/2/3) :25-28.
  • 7Kugiumtzis Dimitris. State space reconstruction parameters in the analysis of chaotic time series-the role of the time window length [ J ]. Physica D, 1996, 95 (1) :13-28.
  • 8Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, delay times, and embedding windows[J]. Physica D, 1999, 127(1/2):48-60.
  • 9Garcia S P, Almeida J S. Nearest neighbor embedding with different time delays [ J ]. Physical Review E, 2005, 71(3) : 037204.
  • 10Hutter M, Zaffalon M. Distribution of mutual information from complete and incomplete data [ J ]. Computational Statistics and Data Analysis, 2005, 48(3 ) : 633-657.

二级参考文献86

共引文献607

同被引文献36

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部