摘要
A long-pulse plasma discharge for more than 30 min. was achieved on the Large Helical Device (LHD). A plasma of ne = 0.8 × 10^19 m^-3 and T10 = 2.0 keV was sustained with PICH = 0.52 MW, PECH = 0.1 MW and averaged PNBI = 0.067 MW. Total injected heating energy was 1.3 G J, which was a quarter of the prepared RF heating energy. One of the keys to the success of the experiment was a dispersion of the local plasma heat load to divertors, accomplished by shifting the magnetic axis inward and outward.
A long-pulse plasma discharge for more than 30 min.was achieved on the LargeHelical Device(LHD).A plasma of n_e=0.8×10^(19)m^(-3)and T_(iO)=2.0 keV was sustained withP_(ICH)=0.52 MW,P_(ECH)=0.1 MW and averaged P_(NBI)=0.067 MW.Total injected heatingenergy was 1.3 GJ,which was a quarter of the prepared RF heating energy.One of the keys to thesuccess of the experiment was a dispersion of the local plasma heat load to divertors,accomplishedby shifting the magnetic axis inward and outward.
基金
supported in part by the JSPS-CAS Core-University Program in the field of Plasma and Nuclear Fusion