期刊文献+

以效率和低NO_x排放为目标的锅炉燃烧整体优化 被引量:38

A Boiler Combustion Global Optimization on Efficiency and Low NO_x Emissions Object
下载PDF
导出
摘要 基于效率和低NOx排放目标的锅炉燃烧整体优化是指实时地提出同时优化效率和低NOx排放目标的操作,而其中锅炉效率和NOx排放模型的精度以及优化算法的效率尤为重要。该文基于改进MRAN算法的锅炉燃烧效率和NOx排放模型以及基于实数编码的遗传优化算法,对电站锅炉的燃烧过程进行优化仿真。结果表明,改进的MRAN算法和基于实数编码的遗传算法应用在电站锅炉的效率和低NOx排放目标燃烧优化上是有效的,可以得到按一定目标函数的锅炉效率和低NOx排放目标的实时整体优化效果。 Boilers combustion global optimization on efficiency and low NOx emissions object is proposing operations on line for considering efficiency and low NOx emissions object simultaneously. According to this problem, Boilers efficiency and NOx emissions model precision and optimization algorithm efficiency are very important. Simulation studies on boilers efficiency and low NOx emissions object combustion global optimization are carried out by improved MRAN algorithm on combustion efficiency and low NOx emissions object and genetic algorithm on real coding. The results show improved MRAN algorithm and genetic algorithm on real coding are effective on efficiency and low NOx emissions object combustion optimization for the power station boilers. The proposed algorithms can get global optimum conditions of boilers efficiency and low NOx emissions object online for a certain object function.
出处 《中国电机工程学报》 EI CSCD 北大核心 2006年第4期46-50,共5页 Proceedings of the CSEE
关键词 热能动力工程 最小资源分配网络 氮氧化物 遗传算法 Thermal power engineering Miminal resource allocating networks (MRAN) NOx Genetic algorithm
  • 相关文献

参考文献8

二级参考文献19

  • 1赵振宇 徐用懋.模糊理论和神经网络的基础与应用[M].北京,南宁:清华大学出版社,广西科学技术出版社,1997.105-106.
  • 2周昊 朱洪波 曾庭华 等(Zhou Hao Zhu Hongbo Zeng Tinghua et al.)大型四角切圆燃烧锅炉NOx排放特性的神经网络模型(An artificial neural network model on NOx emission property of a high capacity tangentially firing boiler)[J]..
  • 3Platt J. A resource allocating network for function interpolation [J]. Neural Computa, 1991(3): 213-225.
  • 4Kadirkamanathan V, Niranjan M. A function estimation approach to sequential learning with neural network[J]. Neural Computa,1993(5): 954-975.
  • 5Lu Y, Sundararajan N, Saratchandran P. Performance evaluation of a sequential minimal radial basis function (RBF) learning algorithm[J]. IEEE Trans. Neural Networks, 1998(9): 308-318.
  • 6J. M. ZURADA, Introduction to articificial neural systems [M]. West Publishing Cpompany, San Francisco, 1992.
  • 7毕玉森.电站锅炉 NO_x 排放现状、预测及技术政策[J].中国电力,1998,31(12):59-62. 被引量:36
  • 8张小桃,王培红.一种新的锅炉效率的计算模型[J].电站系统工程,1999,15(4):16-17. 被引量:25
  • 9金菊良,杨晓华,丁晶.基于实数编码的加速遗传算法[J].四川大学学报(工程科学版),2000,32(4):20-24. 被引量:197
  • 10秦裕琨,孙锐,李争起,孙绍增,吴少华.径向浓淡旋流煤粉燃烧器流动特性研究及应用[J].中国电机工程学报,2000,20(9):72-76. 被引量:9

共引文献150

同被引文献435

引证文献38

二级引证文献346

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部