摘要
分析由延长而形成哈密顿回路、欧拉回路的特点,得出求图G(n,m)的最大回路算法:给定始结点xi和始边ei(xj).采用最长路回延长法,对点xi和边ei(xj)分别求最长路回H E序列,在对点xi求最长路回H E序列中,当出现长度为n的点回路的最长项,边ei(xj)出现长度为m的边回路的最长项,或延长后所得路径中没有元素,便结束延长;如对点xi有长度为n的最大点回路最长项,则G(n,m)为哈密顿图;如对边ei(xj)有长度为m的最大边回路最长项,则G(n,m)为欧拉图.
This paper puts forward the concepts of maximal node-cycle, maximal edge-cycle and maximal cycle. Hamilton cycle of graph G(n,rn) is the maximal node-cycle,Euier cycle is the maximal edge-cycle. Analyzing the characteristic of the node cycle and edge cycle by extension, We get the algorithm of the maximal node cycle of G(n,m) . According to the gived initial node xi and initial edge ei(xj) ,Using the longest path-cycle extension algorithm,we get the relevant longest path cycle HE sequence. If there is the. maximal node cycle item, G(n,rn) is Hamilton cycle. If there is the maximal edge-cycle item, G(n,rn) is Euier cycle. The distinguish between Hamilton graph and Euier graph can be generalized the question of maximal node cycle.
出处
《广西科学院学报》
2006年第1期1-5,共5页
Journal of Guangxi Academy of Sciences
关键词
哈密顿图
欧拉图
点回路边回路
回路
Hamilton graph, Euler graph, node-cycle, edge-cycle, cycle