摘要
In this paper, the Poussinesq equations and mild-slope equation of wave transformation in near-shore shallow water were introduced and the characteristics of the two forms of equations were compared and analyzed. Meanwhile, a Boussinesq wave model which includes effects of bottom friction, wave breaking and subgrid turbulent mixing is established, slot technique dealing with moving boundary and damping layer dealing with absorbing boundary were estab lished. By adopting empirical nonlinear dispersion relation and including nonlinear term, the mild-slope equation model was modified to take nonlinear effects into account. The two types of models were validated with the experiment results given by Berkhoff and their accuracy was analysed and compared with that of correlated methods.
In this paper, the Poussinesq equations and mild-slope equation of wave transformation in near-shore shallow water were introduced and the characteristics of the two forms of equations were compared and analyzed. Meanwhile, a Boussinesq wave model which includes effects of bottom friction, wave breaking and subgrid turbulent mixing is established, slot technique dealing with moving boundary and damping layer dealing with absorbing boundary were estab lished. By adopting empirical nonlinear dispersion relation and including nonlinear term, the mild-slope equation model was modified to take nonlinear effects into account. The two types of models were validated with the experiment results given by Berkhoff and their accuracy was analysed and compared with that of correlated methods.