期刊文献+

壳聚糖对黄瓜幼苗抗盐的协同生理作用研究 被引量:43

Physiological Synergisms of Chitosan on Salt Resistance of Cucumber Seedlings
下载PDF
导出
摘要 在200 mm o l.L-1N aC l胁迫条件下,采用根部注射结合叶面喷施的方法,研究了不同浓度(0、50、100、150、200、250 m g.L-1)壳聚糖(Ch itosan,CTS)对黄瓜(Cucum is sa tivus L.)幼苗抗盐的生理作用。结果表明:CTS能够显著促进黄瓜幼苗的生长,降低植株盐害指数,最高幅度达36.2%(P<0.01);显著提高幼苗叶片游离脯氨酸(P ro)含量、超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)等抗氧化酶活性(P<0.01);有效降低叶片细胞脂质过氧化产物丙二醛(M DA)含量和电解质渗透率(P<0.01);筛选出CTS最佳处理浓度为150 m g.L-1,持效期8 d以上。研究表明适宜浓度的CTS具有增强活性氧清除能力、保护生物膜功能、提高黄瓜幼苗抗盐的协同生理作用。 Root injection and leaf spraying were adopted to study the physiological effect of chitosan at different concentrations (0, 50,100,150,200 and 250 mg · L^- 1) on salt resistance of cucumber (Cucumis sativus L. ) seedlings under the stress created with 200 mmol· L ^-1 NaCl. The results revealed that chitosan could significantly help the cucumber seedlings grow, reduce the salt damage index to the plants by as high as 36. 2% (P〈0. 01), increased the free proline content and SOD, POD and CAT activities in the leaves (P〈0. 01), and effectively decrease the content of the lipid peroxdation product MDA and the electrolyte permeability in the leaf cells (P〈0. 01);The optimal concentration at which chitosan was applied was screened as 150 mg · L^-1 ,which could make the performance period last more than 8 days. This study indicated that chitosan at proper concentrations was capable of improving the ability to eliminate reactive oxygen species,protecting the functions of bio-membrane,raising the physiological synergisms in salt resistance of cucumber seedlings.
出处 《西北植物学报》 CAS CSCD 北大核心 2006年第3期435-441,共7页 Acta Botanica Boreali-Occidentalia Sinica
基金 国家科技攻关计划项目(2004BA521B01) 2005年度科研院所技术开发研究专项 农业部蔬菜遗传与生理重点开放实验室资助项目
关键词 壳聚糖 黄瓜 抗盐性 生理作用 chitosan cucumber, salt resistance physiological effect
  • 相关文献

参考文献33

  • 1HASEGAWA P M,BRESSAN R A,ZHU J K,BOHNERT H J.Plant cellular and molecular responses to high salinity[J].Annu.Rev.Plant Physiol.Plant Mol.Bio.,2000,51:463-499.
  • 2ZHU J K.Plant salt tolerance[J].Trends Plant Sci.,2001,6:66-71.
  • 3GUETA-DAHAN Y,YANIV Z,ZILINSKAS B A,BEN-HAYYIM G.Salt and oxidative stress:similar and specific responses and their relation to salt tolerance in citrus[J].Planta.,1997,203:460-469.
  • 4ASHRAF M,HARRIS P J C.Potential biochemical indicators of salinity tolerance in plant[J].Plant Sci.,2004,166:3-16.
  • 5GOMEZ J M,JIMENEZ A,OLMOS E,SEVILLA F.Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv.Puget) chloroplasts[J].J.Exp.Bot.,2004,55(394):119-130.
  • 6ASHRAF M.Organic substances responsible for salt tolerance in Eruca sativa[J].Biol.Plant,1994,36(2):255-259.
  • 7BOHNERT H J,NELSON D E,JENSEN R G.Adaptations to environmental stresses[J].Plant Cell,1995,7(7):1 099-1 111.
  • 8GILL P K,SHARMA A D,SINGH P,BHULLAR S S.Effect of various abiotic stresses on the growth,soluble carbohytrate and water relations of sorghum seedlings growth in light and darkness[J].Bulg.J.Plant Physiol.,2001,27(1-2):72-84.
  • 9YOKOI S,BRESSAN R A,HASEGAWA P M.Salt stress tolerance of plants[J].JIRCAS Working Report,2002:25-33.
  • 10DIONISIO-SESE M L,TOBITA S.Antioxidant responses of rice seedlings to salinity stress[J].Plant Sci.,1998,135:19.

二级参考文献4

共引文献70

同被引文献678

引证文献43

二级引证文献298

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部