期刊文献+

基于小波神经网络的图像表述

mage Representation Based on a Wavelet Neural Network
下载PDF
导出
摘要 小波神经网络有机地融合了小波分析的时频特性和神经网络自适应优点。本文将小波神经网络应用于图像表述,提出相应的图像表述算法。分别采用两种小波函数作为网络激励函数,以验证图像表述效果。实验结果表明,小波神经网络能够有效地表述图像,其算法具有较强的鲁棒性。 Wavelet neural network organically combines the good localization characteristics of the wavelet transform theory and the adaptive learning virtue of neural networks.In this paper,a wavelet neural network is applied to image representation and the correlated algorithms are also proposed.Two kinds of wavelet functions are respectively selected as the excitation function of wavelet neural network to testify the performance of image representation.The experiment results show that the wavelet neural network can effectively represent the image and the proposed algorithms have good robustness.
作者 蔡念 杨杰
出处 《影像技术》 CAS 2006年第1期31-33,共3页 Image Technology
关键词 小波神经网络 图像表述 小波函数 wavelet neural network image representation wavelet function
  • 相关文献

参考文献8

  • 1J.Daugman.Complete discrete 2-D Gabor transforms byneural networks for image analysis and compression[J]IEEE Trans.Acoust,Speech,Signal Proc,1998,36:1169-1179.
  • 2R.DeVore,B,Jawerth,and B,Lucier.Image compression through wavelet transform coding[J].IEEE Trans.Information Theory,1992,38:719-746.
  • 3A Tewfik,D.Singha,and P.Jorgensen.On the optimal choices of a wavelet for signal representation[J].IEEE Trans.Information Theory,1992,38:747-765.
  • 4蔡念,胡匡祜,李淑宇,苏万芳.小波神经网络及其应用[J].中国体视学与图像分析,2001,6(4):239-245. 被引量:31
  • 5Q.Zhang and A.Benveniste.Wavelet networks[J].IEEE Trans.Neural Networks(5).1992,3 (6):889-898.
  • 6H.H.Szu and B.Telfer.Neural network adaptive wavelets for signal representation and classification.Optical Engineeing[J].1992,31 (9):1907-1916.
  • 7R.Fletcher.Practical Methods of Optimization[M].John Wiley and Sons,New York,1987.
  • 8李建平.小波分析与信号处理[M].重庆:重庆出版社,1997..

二级参考文献21

  • 1吴耀军,陶宝祺,袁慎芳.B样条小波神经网络[J].模式识别与人工智能,1996,9(3):228-233. 被引量:14
  • 2秦前清 杨宗凯.实用小波分析[M].西安:西安电子科技大学出版社,1995..
  • 3刘传.小波神经网络在化学谱图中的应用[M].神经网络理论与应用研究96.成都:西南交通大学出版社,1996:464-467.
  • 4Sadegh N. Nonlinear identification and control via neural networks[C].Proceedings of 1991 ASME Winter Annual Meeting, Atalanta GA,1991
  • 5Mallat S. Multiresolution approximations and wavelet orthogonal bases of L2(R)[J]. Trans. of the American Mathematical Society,1989;315(1): 69-87
  • 6Mallat S. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Trans. on PAMI, 1989;11(7): 674-693
  • 7Mallat S. Multifrequency channel decomposition of images and wavelet models[J]. IEEE Trans. on ASSP, 1989;37:2091-2110
  • 8Moody J. Fast learning in multiresolution hierarchies[R]. Research Report, Yale University, YALEU/DCS/RR-681, 1989
  • 9Bakshi BR, Stephanopoulos G. Wave-net: a multiresolution,hierarchical neural networks with localized learning[J]. AIChEJournal, 1993; 39(1): 57-81
  • 10Zhang Q, Benveniste A. Wavelet networks[J]. IEEE Trans. on Neural Networks, 1992; 3(6): 889-898

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部