期刊文献+

支持向量机在尿沉渣有形成分分类中的应用 被引量:3

Application of Support Vector Machine in the Classification of the Visible Urine Sediment Components
下载PDF
导出
摘要 计算机显微图像尿沉渣分析仪,是运用图像处理技术和统计学习理论中支持向量机(SVM)技术,对尿沉渣的有形成分进行自动分类和识别,并从形态学方面对其进行了特征描述。在应用SVM分类方法的过程中,首先建立已知分类的图像,进而提取图像的特征,再对这些特征进行训练,同时交叉验证确定最优的SVM核函数和参数。最后根据训练过程建立的模型来对测试图像分类。结果表明,选用了支持向量机来实现沉渣识别,与传统的方法相比,取得了更高的识别率。 A kind of computer microscopic urine sediment analyzer is introduced. The system categorizes and recognizes the visible urine sediment components based on the technology of image processing and support vector machine (SVM). Moreover, sampled image feature is extracted, trained and classified. Using support vector machine method classifies and counts the urine sediment visible components and gets the number in the unit volume. The system not only realizes urine sediment visible components classifying and recognition, but also describes its feature from morphology. The SVM trains those features and crosses over their validation in order to get the optimal SVM kernel function and parameters. In the end, it classifies tested images according to the model. Experimental results show that SVM process to distinguish the urine sediment styles and the identify performance is better than tradition methods.
出处 《电子器件》 CAS 2006年第1期98-101,共4页 Chinese Journal of Electron Devices
关键词 尿沉 支持向量机 分类 核函数 urine sediment, SVM, classification kernel function
  • 相关文献

参考文献2

二级参考文献4

共引文献7

同被引文献30

  • 1蔡永军,刘伟玲,虞启琏.遗传神经网络在尿沉渣识别中的应用[J].医疗卫生装备,2004,25(11):1-2. 被引量:5
  • 2MITSUYAMA S, MOTOIKE J, MATSUO H. Automatic classification of urinary sediment images by using a hierarchical modular neural network [C]// Part of the SPIE Conference on Image Processing. San Diego: SPIE, 1999.
  • 3LANGLOIS M R, DELANGHE J R, STEYAERT S R, et al. Automated flow cytometry compared with an automated dipstick reader for urinalysis [J]. Clinical Chemistry, 1999, 45(1): 118- 122.
  • 4CHAN R W Y, SZETO C C. Advances in the clinical laboratory assessment of urinary sediment [J].Clinica Chimica Acta, 2004, 340(1/2): 67- 78.
  • 5LAKATOS J, BODOR T, ZIDARICS Z, et al. Data processing of digital recordings of microscopic examination of urinary sediment[J]. Clinica Chimica Acta, 2000, 297(1/2): 225-237.
  • 6LI Yong-ming, ZENG Xiao-ping. A new strategy for urinary sediment segmentation based on wavelet, morphology and combination method [J]. Computer Methods and Program in Biomedicine, 2006, 84(2/3) : 162 - 173.
  • 7CHUA L O, YANG L. Cellular neural networks: theory [J ]. IEEE Transactions on Circuits and Systems, 1988, 35(10) : 1257 - 1272.
  • 8CHUA L O, YANG L. Cellular neural networks: applications [J].IEEE Transaetions on Cireuits and Systems, 1988, 35(10): 1273- 1290.
  • 9GONZALEZ RC,W00DS RE.数字图像处理学[M].北京:电子工业出版社,2004:523-532.
  • 10SONG X, ABU-MOSTAFA Y, JOSEPH S, et al. Robust image recognition by fusion of contextual information [J].Information Fusion V3, 2002, 10(2): 277-287.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部