期刊文献+

利用肌电信号离线控制机械臂 被引量:3

CONTROLLING MANIPULATOR OFF-LINE USING ELECTROMYOGRAPHY SIGNALS
下载PDF
导出
摘要 研究的目的是利用人体上肢肌肉的肌电信号来控制机械臂的运动。人体手臂在水平面上做屈伸运动,采集肱二头肌和肱三头肌的肌电信号和肘关节角度信号,对肌电信号进行处理和特征提取,提取的特征值作为一个四层的神经网络模型的输入信号。运用改进后的误差反传学习算法最优化网络各层权值,并使用该神经网络模型来预测人体的肘关节角,使用该预测角来控制机械臂,机械臂的运动与人的肘关节角进行比较,试验结果表明肘关节运动角度与机械臂的运动角度方均根误差小于1°。 The objective is to control manipulator off-line by using electromyography signals. Electromyography signals are collected from the biceps and triceps muscles of normal subjects when they move their elbow flexion-extension with time-varying loads. The raw electromyography signals are processed and the new defined characteristic is picked up. A four-layer feed-forward neural network model with the characteristic as its input is developed. The weighted values of the model are optimized with the adjusted back-propagation algorithm. By training the model the transformation can be mapped: From the processed eletromyography signals to the elbow joint angles. The predicted angles are used to control the manipulator by inverse-control method. The angles of the manipulator are compared with those of the elbow joint. The experimental results show that the root mean square error between the joint angle of the manipulator and the actual joint angle measured by the goniometer is less than 1°.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2006年第3期166-170,共5页 Journal of Mechanical Engineering
基金 国家自然科学基金(50375108) 天津市自然科基金(033601611)资助项目
关键词 肌电信号 机械臂 神经网络 状态辨识 Electromyography signals Manipulator Neural network State identification
  • 相关文献

参考文献8

  • 1寿天德.神经生理学[M].北京:高等教育出版社,2002.
  • 2SHERIDAN T B.Telerobotics,automation and human supervisory control[M].The MIT Press,Cambridge MA,1993:7-9.
  • 3PERROTrO A O.Anatomical guide for the electromyographer[M].3rd ed.Springfield,IL:Charles C.Thomas,1994.
  • 4SEPULVEDA F,WELLS D M,VAUGHAN C L.A neural network representation of electromyography and joint dynamics in human gait[J].J.Biomech.,1993,26:101-109.
  • 5FUKUDA O,TSUJI T,KANEKO M.Pattern classification of EMG signals using neural networks during a series of motions[J].Trans.Inst.Elect.Eng.Japan,1997,117-C(10):1 490-1 497.
  • 6TSUJI T,FUKUDA O,ICHINOBE H,et al.A log-linearized Gaussian mixture network and its application to EEG pattern classification[J].IEEE Trans.Syst.,Man.,Cybern.C.,1999(29):60-72.
  • 7TSUJI T,FUKUDA O,KANEKO M,et al.Pattern classification of time-series EMG signals using neural networks[J].Int.J.Adaptive Control and Signal Processing,2000(14):829-848.
  • 8LIPPMANN R P.An introduction to computing with neural nets[M].AIEEE ASSP Mag.,1987:4-22.

共引文献1

同被引文献17

  • 1帅立国,况迎辉,王雪梅,许艳芳.时空二维机器人电触觉临场感模型研究[J].机器人,2005,27(5):441-444. 被引量:1
  • 2Hirai S,Sato T,Matsui T.Intelligent and cooperative control of telerobot tasks[J].IEEE Control Systems Magazine,1992,12(1):51~56.
  • 3Goethals P,De Gersem G,SeRe M,et al.Accurate haptie teleoperation on soft tissues through slave friction compensation by impedance reflection[A].Proceedings of the Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems,World Haptics 2007[C].Piscataway,NJ,USA:IEEE,2007.458~463.
  • 4De Luca C J.Physiology and mathematics of myoelcctric signals[J].IEEE Transactions on Biomedical Engineering,197926(6):313~325.
  • 5Frigo C,Ferrarin M,Frasson W,et al.EMG signals detection and processing for on-line control of functional electrical stimulation[J].Journal of Electromyography and Kinesiology,2000,10(5):351~360.
  • 6Marple L.A new antoregressive spectrum analysis algorithm[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1980,28(4):441~454.
  • 7崔建国,张大千,徐心和.小波变换与神经网络在复杂信号模式识别中的应用[A]中国控制与决策学术年会论文集,2007.
  • 8席旭刚,李仲宁,罗志增.基于相关性分析和支持向量机的手部肌电信号动作识别[J].电子与信息学报,2008,30(10):2315-2319. 被引量:14
  • 9于秀丽,魏世民,廖启征.仿人机器人发展及其技术探索[J].机械工程学报,2009,45(3):71-75. 被引量:42
  • 10李谷,范影乐,庞全.基于排列组合熵的脑电信号睡眠分期研究[J].生物医学工程学杂志,2009,26(4):869-872. 被引量:12

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部