期刊文献+

随机结构反应概率密度演化分析的切球选点法 被引量:16

Strategy of selecting points via sphere of contact in probability density evolution method for response analysis of stochastic structures
下载PDF
导出
摘要 发展了随机结构反应概率密度演化分析中随机参数空间的切球选点法。密度演化方法是一类直接获取随机结构动力反应概率密度函数及其演化过程的有效方法。在多个随机变量时,随机变量空间中的离散代表点选点规则直接关系到密度演化方法的精度和效率。本文构造了平面内等半径相切圆圆心分布定位的算法,以此为基础,建立了三维空间中等半径相切球球心坐标定位的计算公式,从而给出随机变量空间中的离散代表点及其赋得概率。计算表明,基于空间切球法的选点规则具有良好的精度和效率,在2个和3个随机变量情况下是较为理想的选点方法。 The strategy of selecting points via sphere of contact in probability density evolution method for the response analysis of stochastic structures is presented. The probability density evolution method (PDEM) is an effective approach capable of capturing instantaneous probability density functions and its evolution as well. In the analysis of stochastic structures involv- ing multiple random variables, the strategy of selecting representative discretized points in the random variable space is oi paramount importance to the accuracy and efficiency of the PDEM. In the present paper, the location of centers of circles of contact with identical radius in a plane is specified, and based on which, the location of centers of spheres of contact with i- dentical radius in a 3-dlmentional space is then evaluated. As a result, the centers of spheres of contact are selected as repre- sentative discretized points with assigned probability. The case studies indicate that the proposed strategy of selecting points is of accuracy and efficiency in the problem involving two and/or three random parameters.
作者 陈建兵 李杰
出处 《振动工程学报》 EI CSCD 北大核心 2006年第1期1-8,共8页 Journal of Vibration Engineering
基金 国家创新研究群体科学基金资助(50321803) 国家自然科学基金资助(10402030)
关键词 结构动力学 随机变量 随机结构 密度演化方法 相切球 structural dynamics random variables stochastic structures probability density evolution method sphere of contact
  • 相关文献

参考文献18

  • 1Shinozuka M.Probabilistic modeling of concrete structures [J].J.of Engineering Mechanics Div.,ASCE 1972,98(6):1 433-1 451.
  • 2Kleiber M,Hien T D.The Stochastic Finite Element Method[M].Chishcester:John Wiley & Sons,1992:1-121.
  • 3Ghanem R,Spanos P D.Stochastic Finite Element:A Spectral Approach[M].Berlin:Springer-Verlag,1991:1-145.
  • 4Elishakoff I,Ren Y J,Shinozuka M.Variational principles developed for and applied to analysis of stochastic beams[J].Journal of Engineering Mechanics,1996,122 (6):559-565.
  • 5Liu W K,Belytschko T,Mani A.Probability finite elements for nonlinear structural dynamics[J].Computer Methods in Applied Mechanics And Engineering,1986,56:61-81.
  • 6Spanos P D,Zeldin B A.Monte Carlo treatment of random fields:a broad perspective[J].Applied Mechanics Review,1998,51(3):219-237.
  • 7Li J,Liao S T.Response analysis of stochastic parameter structures under non-stationary random excitation[J].Computational Mechanics,2001,27 (1):61-68.
  • 8Iwan W D,Huang C T.On the dynamic response of non-linear systems with parameter uncertainty[J].International Journal of Non-Linear Mechanics,1996;31(5):631-645.
  • 9Impollonia N,Sofi A.A response surface approach for the static analysis of stochastic structures with geometrical nonlinearities[J].Computer Methods in Applied Mechanics and Engineering,2003,192:4 109-4 129.
  • 10李杰,陈建兵.随机结构动力反应分析的概率密度演化方法[J].力学学报,2003,35(4):437-442. 被引量:52

二级参考文献14

  • 1李杰.随机结构分析的扩阶系统方法(Ⅰ)——扩阶系统方程[J].地震工程与工程振动,1995,15(3):111-118. 被引量:12
  • 2张炳根 赵玉芝.科学与工程中的随机微分方程[M].北京:海洋出版社,1981..
  • 3Shinozuka M. Probabilistic modeling of concrete structures. Journal of Engineering Mechanics, ASCE, 1972, 98:1433-1451.
  • 4Kleiber M, Hien TD. The Stochastic Finite Element Method. Chishcester: John Wiley & Sons, 1992.
  • 5Hisada T, Nakagiri S, Stochastic finite element method developed for structural safety and reliability. In: Proc.3rd Int Conf on Structural Safety and Reliability, 1981,395-408.
  • 6Ghanem R, Spanos PD. Polynomial chaos in stochastic finite elements. Journal of Applied Mechanics, 1990, 57:197-202.
  • 7Jensen H, Iwan WD. Response of systems with uncertain parameters to stochastic excitation. Journal of Engineering Mechanics, 1992, 118 (5): 1012-1025.
  • 8Elishakoff I, Ben Y J, Shinozuka M. Variational principles developed for and applied to analysis of stochastic beams.Journal of Engineering Mechanics, 1996, 122 (6): 559-565.
  • 9Ren Y J, Elishakoff I, Shinozulm M. Finite element method for stochastic beams based on variational principles. Journal of Applied Mechanics, 1997, 64:664-669.
  • 10Elishakoff I, Impollonia N, Ren YJ. New exact solutions for randomly loaded beams with stochastic flexibility. International Journal of Solids and Structures, 1999, 36,2325-2340.

共引文献53

同被引文献169

引证文献16

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部