期刊文献+

p-Laplace方程三点边值问题解的存在性 被引量:3

The Existence of Solutions for p-Laplace Equatio ns Subject to Three-point Boundary Value Problem
下载PDF
导出
摘要 利用度理论研究了p-Laplace方程(φp(u′))′=f(t,u,u′)非共振情形下的三点边值问题解的存在性,得到了两个解存在的充分条件,从而推广和改进了一些已有的结果. In this paper, the existence of solutions for p-Laplace equations subject to three-point boundary value problem at non-resonance is studied by using degree theory, and two sufficient conditions are obtained. Some known results are improved.
出处 《徐州师范大学学报(自然科学版)》 CAS 2006年第1期31-35,共5页 Journal of Xuzhou Normal University(Natural Science Edition)
基金 中国矿业大学青年科研基金(A200403) 中国矿业大学基础科学预研基金(A03-06)
关键词 P-LAPLACE方程 三点边值 非共振 度理论 p-Laplace equation three-point boundary value non-resonance degree theory
  • 相关文献

参考文献9

  • 1Leibenson L S.General problem of the movement of a compressible fluid in a porous medium[J].Izv Akad Nauk SSSR,Geograhy and Geophysics,1983,9:7.
  • 2Bobisud L E.Steady state turbulent flow with reaction[J].Rochy Mountain J Math,1991,21:993.
  • 3Herrero M A,Vazquz J L.On the propagation properties of a nonlinear degenerate parabolic equation[J].Comm Partial Differential Equations,1982,7:1381.
  • 4De Coster C.Pairs of positive solutions for the one-dimensional p-Laplacian[J].Nonliear Analysis,1994,23(5):669.
  • 5Jiang Daqing,Wang Junyu.A generalized periodic boundary value problem for the one-dimensional p-Laplacian[J].Annales Polonici Mathematici,1997,LXV(3):265.
  • 6O'regan D.Some general exsitence principles and results for (ψ(y'))'=qf(t,y,y'),0<t<1[J].SIAM J Math Anal,1993,24:648.
  • 7Pino M D,Elgueta M,Maná sevich R.A homotopic deformation along p of a Leray-Schauder degree result and existence for (|u'|p-2u)'+f(t,u)=0,u(0)=u(T),p>1[J].J Differential Equations,1989,80:1.
  • 8Feng W.On an m-point boundary value problem[J].Nonlinear Analysis,1997,30(8):5369.
  • 9Manasevich R,Mawhin J.Periodic solutions for nonlinear systems with p-Laplacian-like operators[J].J Differential Equations,1998,145:367.

同被引文献17

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部