期刊文献+

两种布局微型飞机的风洞试验研究 被引量:2

The investigation on MAVs of two configurations in wind tunnel
下载PDF
导出
摘要 介绍了齐默尔曼和反齐默尔曼两种布局的微型飞机在西北工业大学低湍流度风洞进行风洞试验研究的情况。研究目的是探索微型飞机的风洞试验技术和获得两种布局微型飞机的低雷诺数气动特性。着重研究了风速、迎角对两种布局微型飞机气动特性的影响。研究结果表明:风洞试验是研究与微型飞机有关的低雷诺数气动特性问题的有效而又切实可行的途经;反齐默尔曼布局具有较高的升阻比和升力系数,是微型飞机理想的设计选择。试验结果可供微型飞机设计参考。 The investigation of MAVs (Micro Air Vehicles) of two configurations were carried out in Low Turbulence Wind Tunnel at NPU (Northwestern Polyteclmical University). The aim is to explore the experimental technique of the MAVs and obtain low Reynolds number aerodynamic characteristics on two configurations. The influence of wind velocity and angle of attack on aerodynamic characteristics is reported. It is shown that the wind tunnel experiment is an effective and feasible way to study low Reynolds number aerodynamic characteristics and Inverse Zimmerman configuration has higher lift-to-drag ratio and higher lift coefficient than that of Zimmerman configuration. It is an ideal configuration choice for the design of the MAVs. The results of the tests can be used to refer to the design of MAVs.
出处 《实验流体力学》 EI CAS CSCD 北大核心 2006年第1期72-74,共3页 Journal of Experiments in Fluid Mechanics
基金 总装气动预研项目(413130401) 国防基础科研项目(J1500C001)联合资助
关键词 微型飞机 低湍流度风洞 齐耿尔曼布局 micro air vehicles (MAVs) low turbulence wind tunnel (LTWT) Zimmerman configuration
  • 相关文献

参考文献4

二级参考文献20

  • 1崔尔杰.MEMS与智能化流体力学[J].空气动力学学报,2000,18(z1):52-59. 被引量:3
  • 2[1]Ellington C P, van den Berg C,Willmott A P. Leading edge vortices in insect flight[J]. Nature, 1996, 384: 626-630.
  • 3[2]Birch J M,Dickinson M H. Spanwise flow and the attachment of the leading-edge vortex on insect wings[J]. Nature, 2001, 412: 729-733.
  • 4[3]Dickinson M H, Lehman F O,Sane S P. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284: 1954-1960.
  • 5[4]Sun M. Tang J. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion[J]. J Exp Biol, 2002, 205: 55-70.
  • 6[5]Sane S P,Dickinson M H. The control of flight force by a flapping wing: lift and drag production[J]. J Exp Biol, 2001, 204: 2607-2626.
  • 7[6]Lehmann F O, Dickinson H D. The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster[J]. J Exp Biol, 1997, 200: 1133-1143.
  • 8[7]Sun M, Tang J. Lift and power requirements of hovering flight in Drosophila[J]. J Exp Biol, 2002, 205(16):2413-2427.
  • 9[8]Ellington C P. The aerodynamics of hovering insect flight Ⅳ Aerodynamic mechanisms[J]. Phil Trans R Soc Lond B, 1984b, 305: 79-113.
  • 10[9]Ellington C P, Machin K E,Casey T M. Oxygen consumption of bumblebees in forward flight[J]. Nature, 1990, 347: 472-473.

共引文献37

同被引文献15

  • 1李建华,李锋,石文.微型飞行器相关布局气动特性实验研究[J].空气动力学学报,2006,24(4):498-501. 被引量:1
  • 2JOEL M, et al. Development of the black widow micro Air vehicle[ R] . MAA 01-0127,2001.
  • 3TORRES G E, MUELLER T J. Low-aspect-ratio wing aerodynamics at low Reynolds numbers [J]. Journal of Aircraft, 2004, 42(5): 865-873.
  • 4CHORIN J A. A numerical method for solving incompressible viscous flow problems [J]. Journal of Computational Physics, 1997, 135(2): 118-125.
  • 5ROGERS S E, KWAK D. Steady and unsteady solutions of the incompressible Navier-Stokes equations [J]. AIAA Journal, 1989, 29(4): 603-610.
  • 6ROGERS S E, KWAK D. An upwind differencing scheme for the steeply-state incompressible Navier-Stokes equations [R]. NASA-TM-101051, 1988.
  • 7SHERRIE L K, ROBERT T B, CHRISTOPHER L R. CFL3D USER'S Manual [R]. NASA-TM-208444, 1998.
  • 8BALDWIN B S, BARTH T J. A one-equation turbulence transport model for high Reynolds number wall- bounded flows [R]. NASA-TM-102847, 1990.
  • 9PELLETIER A, MUELLER T J. Low Reynolds number aerodynamics of low-aspect-ratio, thin/flat/camberedplate Wings [J]. Journal of Aircraft, 2001, 37(5): 825- 832.
  • 10王超,沈怀荣.低雷诺数条件下微型无人机机翼形状的研究[J].飞机设计,2009,29(4):13-17. 被引量:4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部