期刊文献+

混沌时间序列的局域区间预测 被引量:1

LOCAL INTERVAL PREDICTION METHOD FOR CHAOTIC TIME SERIES
下载PDF
导出
摘要 在深入分析εp-邻近点能够避免伪邻近点产生的基础上,提出了区间邻近点的概念,它在有效防止伪邻近点产生的同时也建立起了一个邻近点列表,可以方便地从该列表中找出某一状态的邻近点集合,并给出了混沌时间序列的一种局域区间预测方法。该方法避免了经典局域预测法中每一步都要搜索历史数据寻找邻近点的过程,提高了局域预测的效率。 Based on ε^p-neighboring points, the interval neighboring point is defined for avoiding false neighboring points and building up a data list. According to the interval neighboring point, the local interval prediction method for chaotic time series is proposed. The list L for finding neighboring points is gradually established in the procedure of forecasting future values. It is convenient that all neighboring points are obtained from the list, instead of searching in history data. Also the method can continually update the list and supply new types of neighboring points for the list. And the effects of the length of history data and the number of small intervals on predictive performance are considered. In the end, our simulation shows the method is effective
作者 赵小梅
出处 《陕西科技大学学报(自然科学版)》 2006年第1期53-57,共5页 Journal of Shaanxi University of Science & Technology
关键词 混沌时间序列 局域预测 历史数据长度 区间划分 chaotic time series, local prediction length of history data dividing interval
  • 相关文献

参考文献10

  • 1Farmer,J.D,J.J.Sidorowich.Predicting chaotic time series[J].Physical Review Letters,1987,59(8):845~848.
  • 2Sugihara,G,R.M.May.Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series[J].Nature,1990,344(19):734~741.
  • 3Alparslan,A.K,M.Sayar,etal.State-space prediction model for chaotic time series[J].Phys.Rev.E,1998,58(2):2640~2643.
  • 4Ikeguchi,T,K.Ahara.Difference correlation can distinguish deterministic chaos from 1/f(alpha)-type colored noise[J].Phys.Rev.E,1997,55(3):2530~2538.
  • 5Kidachi,H.On a model approach to forecasting of chaotic time series[J].Progress of Theoretical Physics,2000,103(3):497~518.
  • 6Kocak,K,L.Saylan,O.Sen.Nonlinear time series prediction of O3 concentration in Istanbul[J].Atmospheric Environment,2000,34:1267~1271.
  • 7郭刚,史忠科,戴冠中.基于混沌理论进行股票市场的多步预测[J].信息与控制,2000,29(2):177-181. 被引量:24
  • 8谢勇,徐健学,杨红军,胡三觉.皮层脑电时间序列的相空间重构及非线性特征量的提取[J].物理学报,2002,51(2):205-214. 被引量:25
  • 9Tankens,F.Detecting strange attractors in turbulence ,in:Dynamical Systems and Turbulence[M].Edited by D.Rand and L.-S.Young Springer,1981,366.
  • 10Gong,X.F,C.H.Lai.Improvement of the local prediction of chaotic time series[J].Physical Review E,1999,60(5):5463~5468.

二级参考文献27

  • 1杨志安 王光瑞 陈式刚.计算物理,1995,12:442-442.
  • 2Gong Y F 1998 Ph.D. Thesis(Xi'an Jiaotong University, Xi'an) (in Chinese)[龚云帆 1998 西安交通大学博士学位论文]
  • 3Gong Y F, Xu J X et al 1998 Biol.Cybern. 78 159
  • 4Xu J X, Gong Y F et al 1997 Physica D 100 212
  • 5Theiler J, Eubank S, Longtin A, Galdrikian B and Farmer J D 1992 Physica D58 77
  • 6Rosenstein M T, Collins J J, De Luca C J 1993 Physica D65 117
  • 7Kantz H 1994 Physics Letters A185 77
  • 8Pincus S M 1991 Proc. Natl. Sci. 88 2297
  • 9Pincus S M Private communication
  • 10Chiva E and Tarroux P 1995 Biol Cybern 73(4) 323

共引文献47

同被引文献10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部