期刊文献+

不确定连续非线性系统逆混沌反控制 被引量:4

Nonlinear system inverse chaos anti-control with uncertainties
下载PDF
导出
摘要 针对一类非线性不确定系统的混沌反控制,提出非线性不确定系统鲁棒混沌反控制的逆系统方法.由微分跟随器、积分逆系统和滤波器实现自适应逆混沌反控制器.通过微分跟随器提取混沌参考系统状态和受控系统状态,依照跟踪性能要求设计期望的动态系统,借助逆系统理论得到受控系统确定阶的逆,考虑幅值、相位调整和噪声抑制的需要设计滤波器.该方法使受控系统状态跟踪已知混沌参考系统状态.结果表明,该方法输出微分跟随器对受控对象动态特性不确定性可以进行高精度实时提取,控制器设计不受李雅普诺夫指数配置求取和受控系统模型的约束. Aimed at chaos anti-control of a class of nonlinear system with uncertainties, an inverse system method of robust chaos anti-control was put forward. Adaptive inverse chaos anti-control was realized by tracking differentiators, integrating inverse system and filtering. After states of reference chaos system and the controlled system were obtained through tracking differentiators, the expected dynamic system was designed according to tracking performance demands, and certain order inverse of the controlled system was constructed by using inverse system theory. A filter was designed based on the requirements of magnitude, phase adjustments and noise cancellation, and the controlled system states were forced to track the states of reference chaos system. The results show that the dynamic uncertainties of the controlled system can be determined precisely in real-time by the output tracking differentiator precisely. The controller design is free of the constraints of Lyapunov exponents' allocation and the model of the controlled system.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第3期474-477,共4页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60374013) 浙江省自然科学基金资助项目(M603217 Y104414)
关键词 混沌 混沌反控制 微分跟随器 逆系统方法 鲁棒控制 chaos chaos anti-control tracking differentiator inverse system method robust control
  • 相关文献

参考文献10

  • 1LIAN K Y,CHING T S ,LIAN P.Discrete time chaotic systems:applications in secure communications [J].International Journal of Bifurcation and Chaos,2000,10(9):2193 - 2206.
  • 2CHEN G,LAID.Feedback control of Lyapunov exponents for discrete time dynamical systems [J].IEEE Transactions on Circuits and Systems I ,1997,43(3):250- 253.
  • 3WANG X F,CHEN G.Chaotification arbitrarily small feedback controls:theory,method and applications [J].International Journal of Bifurcation and Chaos,2000,10(3):549 - 570.
  • 4关新平,范正平,张群亮,王益群.连续时间稳定线性系统的混沌反控制研究[J].物理学报,2002,51(10):2216-2220. 被引量:42
  • 5OMER M.A model based scheme for anti-control of some chaotic systems [J].International Journal of Bifurcation and Control,2003,13(11):3449 - 3457.
  • 6STARKOV K,CHEN G R.Chaotification of polynomial continuous-time systems and rational normal forms [J].Chaos Solitons and Fractals,2004,22:849 - 856.
  • 7UEDA Y.Random phenomena resulting from non-linearity in the system described by duffing's equation [J].International Journal of Non-Linear Mechanics,1985,20:481 - 491.
  • 8韩京清,王伟.非线性跟踪─微分器[J].系统科学与数学,1994,14(2):177-183. 被引量:412
  • 9李春文,苗原,冯元琨,杜继宏.非线性系统控制的逆系统方法(Ⅱ)——多变量控制理论[J].控制与决策,1997,12(6):625-630. 被引量:27
  • 10赵辽英,赵光宙,厉小润.基于非线性反馈控制的超混沌系统同步方法[J].浙江大学学报(工学版),2004,38(5):544-548. 被引量:5

二级参考文献21

  • 1刘广生,刘泮石,王文杰.同步发电机非线性励磁控制的逆系统方法[J].控制与决策,1993,8(6):456-460. 被引量:6
  • 2李东海,苗建明.电力系统非线性控制的逆系统原理[J].电子技术应用,1995,21(11):23-25. 被引量:5
  • 3[10]Chen G R 1981 IEEE Trans. Circuits Syst. Soc. Newsletter, Match 1998, 1
  • 4[11]Chen G R and Lai D 1998 Int. J. Bifur. Chaos. 8 1585
  • 5[12]Wang X F and Chen G R 1999 Int. J. Bifur. Chaos. 9 1435
  • 6[13]Wang X F and Chen G R 2000 Int. J. Bifur. Chaos. 10 549
  • 7[14]Wang X F and Chen G R 2000 IEEE Trans, Circuits Syst. 47 1539
  • 8[15]Wu C W and Chua L O 1996 Int. J. Bif. Chaos. 6 801
  • 9[16]Nijmeijer H and Berghuis H 1995 IEEE Trans, Circuits Syst. 42 473
  • 10韩京清,1989年

共引文献480

同被引文献96

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部