期刊文献+

基于GDT和粗糙集的数据挖掘

Data Mining Based on the GDT and Rough Sets
下载PDF
导出
摘要 文章介绍一种基于推广分布表(GDT)和粗糙集的从不确定、不完整数据库中挖掘if-then规则的新方法.GDT是描述离散范畴的概念和实例的概率关系的表,通过使用GDT作为设定的搜索空间,将粗糙集与GDT相结合,可以处理噪声和未知实例.强度较大的if-then规则可以有效地按自底向上逐步增加的方式从大量的、复杂的数据库中获得. There introduces a new approach for mining if-then rules in databases with uncertainty and incompleteness. The approach is based on the combination of Generalization Distribution Table (GDT) and the Rough Set methodology. A GDT is a table in which the probabilistic relationships between concepts and instances over discrete domains are represented. By using a GDT as a hypothesis search space and combining the GDT with the rough set methodology, noises and unseen instances can be handled, and if-then rules with strengths can be effectively acquired from large, complex databases in an incremental,bottom-up mode.
出处 《太原师范学院学报(自然科学版)》 2006年第1期37-40,共4页 Journal of Taiyuan Normal University:Natural Science Edition
基金 山西省教育厅高等学校科技开发项目(N0.20041335) 山西省忻州师范学院院级基金资助项目(NO.200303)
关键词 GDT 粗糙集 规则强度 冲突规则 GDT rough set strength of the rules contradictory rules
  • 相关文献

参考文献5

  • 1[1]Pawlak Z.Rough sets[J].International Journal of Computer and Infomation Sciences,1982(11):341-356
  • 2[2]Pawlak Z.Rough sets:Theoretical Aspects of Reasoning about Data[M].Dordrecht:Kluwer Academic Publishers,1991
  • 3[3]Mitchell T M.Version space:A candidate elimination approach to rule learning[J].In:Proc.5th Int.Joint Conf.Artificial Intelligence,1977,(5) :305-310
  • 4[4]Mitchell T M.Generalization as search[J].Artifical Intelligence,1982,(18) :203-226
  • 5王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264

二级参考文献1

  • 1Zdzis?aw Pawlak. Rough sets[J] 1982,International Journal of Computer & Information Sciences(5):341~356

共引文献263

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部