期刊文献+

基于频率概率约束的连续体结构拓扑优化 被引量:5

TOPOLOGY OPTIMIZATION FOR CONTINUUM STRUCTURES WITH FREQUENCY PROBABILITY CONSTRAINT
下载PDF
导出
摘要 研究了具有随机参数的连续体结构在频率概率约束下的动力特性拓扑优化问题.构建了基于概率的弯曲薄板和平面应力薄板结构的拓扑优化模型,对频率概率约束进行了等价显式化处理,导出了随机参数结构的动力特性数字特征计算表达式,并提出了一种进化优化准则.算例的优化结果表明文中模型的合理性和方法的有效性. Dynamic characteristic topology optimization for continuum structures with random parameters is investigated in this paper. Based on frequency probability constraints, the models of topology optimization for a bending thin plate and a plain stress thin plate are constructed. The numerical characteristics of the structures is obtained by transforming the frequency probability constraints into equivalent normal constraints. A new evolutionary optimal criterion is proposed. The rationality of the model and the effectiveness of the method are illustrated by examples.
出处 《固体力学学报》 CAS CSCD 北大核心 2006年第1期71-76,共6页 Chinese Journal of Solid Mechanics
基金 陕西省自然科学基金项目(2002A14)资助
关键词 连续体结构 频率概率约束 进化准则 可靠性 拓扑优化 continuum structure, frequency probability constraints, evolutionary criterion, reliability, topology optimization
  • 相关文献

参考文献5

二级参考文献26

  • 1陈塑寰,宋大同,韩万芝.多自由度振动结构的随机优化方法[J].力学学报,1994,26(4):432-439. 被引量:6
  • 2程耿东,张东旭.受应力约束的平面弹性体的拓扑优化[J].大连理工大学学报,1995,35(1):1-9. 被引量:86
  • 3[1]S. Sankaranarayanan, R. T. Haftka, R. K. Kapania. Truss topology optimization with simultaneous analysis and design. AIAA Journal. 1994, 32(2): 420~424
  • 4[2]F. Erbatur,O. Hasancebi,I. Tütüncü, H.Kilic. Optimal design of planar and space structures with genetic algorithms. comput. Struct. 2000, 75: 209~224
  • 5[3]G. Cheng. Some aspects of truss topology optimization. Struct. optim. 1995, 10: 173~179
  • 6[4]B. Hassani, E. Hinton. A review of homogenization and topology optimization I,II,III,. Comput. and Struct. 1998, 69: 707~756
  • 7[5]D. Manickarajah, Y.M. Xie, G.P. Steven. Optimum design of frame with multiple constraints using an evolutionary method. Comput. Struct. 2000, 74: 731~741
  • 8[6]O. Sigmund, J. Petersson, Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Strcut. Optim. 1998, 16: 68~75
  • 9[7]M.P. Bends.n. R.B. Haber. The Michell truss layout problem as a low volume fraction limit of the perforated plate topology optimization problem: an asymptotic study. Struct. Optim. 1993, 6: 263~267
  • 10Yang R J,Struct Opt,1995年,9卷,245页

共引文献145

同被引文献53

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部