摘要
在用于检测同相轴的Duffing型系统中,非线性恢复力项的选取至关重要.针对具有不同非线性恢复力项的混沌系统,本文首先就非线性恢复力项的来源进行了说明,通过对哈密顿系统和耗散系统的仿真实验分析,以及理论推导,确定了势能—哈密顿多项式方程中可用于混沌振子检测系统的各项幂次和各项系数组合关系,即非线性恢复力项的选取规则:幂次最高项为奇次,其系数大于零.
In the Duffing type systems used for detecting events, it is vital to select the nonlinear resilience item. As for the chaotic systems with the different nonlinear resilience items, the paper describes the origin of the nonlinear resilience item, simulates and analyzes the Hamilton systems and dissipative systems and deduces the relative theory, and then the paper presents the combined relations between each power and coefficient in the potential energy-Hamilton polynomial equation used for the chaotic oscillator detection system, that is, the rule to select the nonlinear resilience item:the highest item of powers should be odd and its coefficient should be more than zero.
出处
《地球物理学进展》
CSCD
北大核心
2006年第1期61-69,共9页
Progress in Geophysics
基金
国家自然科学基金项目(40374045)资助
关键词
混沌振子信号检测
非线性恢复力项
周期相态
势能-哈密顿方程
chaotic oscillator detection system, nonlinear resilience item, periodic phase state, potential energy-Hamilton equation