期刊文献+

组合最小二乘支持向量机与粒子群优化算法研究黄土湿陷性 被引量:4

A Study of Loess Collapsibility by Combining Least Squares Support Vector Machines with Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 通过静力触探试验指标结合扰动黄土试样的液限、塑限及含水量等指标用最小二乘支持向量机方法进行建模,提出了静力触探试验指标和湿陷系数的非线性关系模型,并引入粒子群优化算法进行模型反演分析,确定最优参数。通过6个对比勘探点的50组试样实例应用分析,显示了最小二乘支持向量机是一种较为有效的非线性建模方法,粒子群优化算法进行模型参数优化能够保证全局最优。验证结果表明模型的精度较高,有一定的实用价值。 Through the static contact probing test indexes in combining with the indexes of liquid limit, plastic limit and water contents of disturbed loess samples, the mathematical model is established using the least square support vector machine method. The non-linear relation model between the static contact probing test indexes and loess collapsibility coefficients is suggested. Also, the particle swarm optimization algorithm is introduced to carry out the model inverse analysis so as to determine optimal parameters. The real sample application analysis of so groups from 6 comparative surveying points indicates that the least square support vector machine is a kind of effective non-linear model establishment method, and that the particle swarm algorithm to optimize model parameters is able to guarantee the whole optimization. The testing results show that the model is high in accuracy and practical in use.
出处 《西安理工大学学报》 CAS 2006年第1期15-19,共5页 Journal of Xi'an University of Technology
基金 国家自然科学基金资助项目(10572090)
关键词 静力触探 最小二乘支持向量机 粒子群算法 湿陷性 cone penetration test (CPT) least squares support vector machines particle swarm algorithm loess collapsibility
  • 相关文献

参考文献8

二级参考文献39

  • 1井彦林,穆晓云,陈剑康,李锁全.黄土工程地质计算的微机化[J].煤矿设计,1993(11):20-23. 被引量:1
  • 2刘祖典.影响黄土湿陷系数因素的分析[J].工程勘察,1994,22(5):6-11. 被引量:49
  • 3杨林德.岩土工程问题的反演理论和工程实践[M].北京:科学出版社,1999..
  • 4张松林.CART-分类与回归树方法介绍[J].火山地质与矿产,1997,18(1):67-75. 被引量:23
  • 5Alex J Smola, Bemhard Schoelkopf. A tutorial on support vector regression[R]. NeuroCOLT2 Technical Report Series NC2-TR-1998030,1998.
  • 6Burge C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery. 1998. (2):121-167.
  • 7John C Platt. Sequential minimal optimization: a fast algorithm for training support vector maehines[R]. Technical Report MSR-TR-98-14, 1998.
  • 8孙均 蒋树屏 等.岩土力学反演问题的随机理论与方法[M].汕头:汕头大学出版社,1996..
  • 9Vapnik V N. The nature of statistical learning theory [M]. New York: Springer-Verlag. 1995.
  • 10Zhang Q,Benveniste A. Wavelet networks [J]. IEEE Trans on Neural Networks,1992,3(6):889-898.

共引文献165

同被引文献44

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部