摘要
针对受完整约束的多体系统,首先指出其动力学Euler-Lagrange方程组是高指标(index>2)的微分代数方程组;不同于传统的直接增广法和直接消去法,文中提出了一类将微分代数方程直接视为非线性代数方程组求解的新的数值分析方法;最后,以典型的单摆模型为例给出了新算法与其他方法的比较,结果表明新算法优于BDF方法及违约修正方法。
For a multibody system with holonomic constrains,the Euler-Lagr ange dynamic equations of the system are characterized as a set of differential-algebraic ones with an index larger than 2,the corresponding algorithm is adopted,where the differential-algebraic equations are treated directly as a set of nonlinear algebraic equations to differ from the traditional algorithms,such as constraint regularization method and constraint reduction method.A comparative simulation!for typical pendulum indicates that the proposed method outperforms BDF method and constraint stabilization method.
出处
《应用力学学报》
EI
CAS
CSCD
北大核心
2006年第1期26-30,共5页
Chinese Journal of Applied Mechanics
基金
总装备部预研项目(41321070301)
关键词
多体系统动力学
微分-代数方程
微分指标
multibody system dynamics,differential-algebraic equations,differential index.