摘要
基于Von Karman板理论,应用三分区模型,建立了考虑横向剪切效应时具任意脱层的正交对称铺设轴对称层合圆板在径向压力荷载作用下的非线性运动微分方程。对未知变量在空间上采用Bessel函数,应用Galerkin法,得到无量纲的仅关于时间函数的运动微分方程,并应用谐波平衡法对此方程进行求解,算例中讨论了不同脱层半径、脱层深度对具脱层的正交对称铺设轴对称层合圆板非线性幅频响应的影响。
Based on the Von Karmen theory,the method of the dissociated three regions is adopted to establish the nonlinearity governing equations of motion for axisymmetric ortho-symmetric ply delaminated plate,where the effect of transverse shearing is taken into account.Galerkin method is used to obtain a set of the dimensioness dynamic differential equations,which are resolved with harmonic balance method.The effects of different radius and depth of delamination on the amplitude-frequency curves of the circular plate are discussed.
出处
《应用力学学报》
EI
CAS
CSCD
北大核心
2006年第1期123-127,177-178,共5页
Chinese Journal of Applied Mechanics
关键词
非线性振动
轴对称圆板
脱层
幅频响应曲线
nonlinearity vibration,axisymmertric circular plate,delamination,amplitude-frequency curves.