期刊文献+

三维点集Voronoi图的算法实现 被引量:6

Implementation of Voronoi diagram algorithms for 3D point set
下载PDF
导出
摘要 对现有三维点集Voronoi图的生成算法进行深入研究,提出并实现由Delaunay三角剖分构建Voronoi图的算法.首先采用随机增量局部转换计算Delaunay三角剖分,然后再根据对偶特性构建Voronoi图.该算法健壮性很高,适用于处理各种非完全共面三维点集. Based on the deep research on the construction algorithms of 3D Voronoi diagram, the algorithm of constructing the Voronoi diagram from a Delaunay triangulation is proposed and implemented. Delaunay triangulation is achieved by using randomized incremental local transformation. Then its Voronoi diagram is created according to the dual property. The algorithm is highly robust and adapt to any non-coplanar 3D point set.
作者 刘雪娜
出处 《计算机辅助工程》 2006年第1期1-3,7,共4页 Computer Aided Engineering
关键词 VORONOI图 DELAUNAY三角剖分 计算几何 Voronoi diagram Delaunay triangulation computational geometry
  • 相关文献

参考文献7

  • 1O'ROURKE J.Computational geometry in C(2nd Edition) [M].London:Cambridge Univ.Press,1998:181-226
  • 2刘金义,刘爽.Voronoi图应用综述[J].工程图学学报,2004,25(2):125-132. 被引量:75
  • 3KLEE V.On the complexity of d-dimensional Voronoi diagrams [J].Archiv der Mathematik,1980,34:75-80.
  • 4BROWN K Q.Voronoi diagrams from convex hulls [C]//Inf.Process,1979,Lett.9:223-228.
  • 5HUBBARD P M.Improving accuracy in a robust algorithm for three-dimensional Voronoi diagrams [J].The Journal of Graphics Tools,1996,1(1):33-47.
  • 6BARRY J.Construction of three-dimensional improved-quality Delaunay triangulations using local transformations [J].SIAM Journal on Scientific Computing,1995,16(6):1292-1307.
  • 7DOBKIN D P,LASZLO M J.Primitives for the manipulation of three-dimensional subdivisions [J].Algorithmica,1989(4):3-32.

二级参考文献56

  • 1[48]Ponamgi, M K, et al. Incremental algorithms for collision detection between solid models[J]. IEEE Transactions on Visualization and Computer Graphics, 1997, 3(1): 51~64.
  • 2[49]Fujita K, et al. Voronoi diagram based cumulative approximation for engineering optimization[EB/OL].http://syd.meim.eng.osaka-u.ac.jp/papers/2000/09_AI AA_co.ps.
  • 3[50]Yahagi H, et al. The forest method as a new parallel tree method with the sectional Voronoi tessellation[EB/OL]. http://www.mpia-hd.mpg.de/theory/mori/preprints/ymy99 .ps.gz.
  • 4[51]Allard D. Non parametric maximum likelihood estimation of features in spatial point processes using Voronoi tessellation[EB/OL].http//www. stat.washington.edu/tech.reports/tr293R.ps.
  • 5[52]Papadopoulo E, Lee D T. Critical area computation-a new approach[EB/OL]. http://web.eecs.nwu.edu/~dtlee/ISPD98.ps.
  • 6[53]Swanson K, et al. An optimal algorithm for roundness determination on convex polygons[J], Computational Geometry: Theory & Applications, 1995, 5:225~235.
  • 7[54]Kaplan C. Voronoi diagrams and ornamental design[EB/OL].http://www. cs.washington.edu/homes/csk/tile/papers/Kaplan_isama1999.pdf.
  • 8[6]Albers G, et al. Voronoi diagrams of moving points[J].International Journal of Computational Geometry & Applications, 1998, 8(3): 365~380.
  • 9[7]Aurenhammer F. Power diagrams: properties,algorithms, and applications[J]. SIAM Journal on Computing, 1987, 16(1): 78~96.
  • 10[8]Augenbaum J M, Peskin C S. On the construction of the Voronoi mesh on a sphere[J]. Journal of Computational Physics, 1985, 59: 177~192.

共引文献74

同被引文献88

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部