期刊文献+

基于神经网络和D-S证据理论的气液两相流流型识别方法 被引量:19

Identification method of gas-liquid two-phase flow patterns based on neural network and D-S evidential theory
下载PDF
导出
摘要 提出一种运用神经网络和D-S(Dempster-Shafer)证据理论的多特征信息融合的气液两相流流型识别方法.对压差波动信号进行4层小波包分解,提取各频带信号的小波包能量和信息熵构造两个特征向量,再利用统计和分形理论提取压差波动信号的3个统计参数和4个分形参数作为另一个特征向量,然后将这些特征向量送入改进的BP神经网络进行训练,从而实现对流型的识别.以初始识别结果作为彼此独立的证据,根据D-S证据融合规则进行融合处理,得到最终的识别结果.以水平管内空气-水两相流流型识别为例,说明了该方法的具体实现过程.结果表明,多特征信息融合比单一特征的识别方法具有更高的识别率. Based on the neural network and the D-S (Dempster-Shafer) evidential theory, a method was proposed for identifying gas-liquid two-phase flow regimes. Firstly, the differential pressure fluctuation signals were decomposed into 4 levels by the wavelet packet transform. Wavelet packet energy and information entropy of signals in various frequency bands were extracted and two eigenvectors were constructed and then the three statistical parameters and four fractal parameters extracted by the statistical and the fractal theories of the differential pressure fluctuation signals were taken as another eigenvector. Furthermore, the eigenvectors were put into the improved BP neural network and trained to realize the flow regime identification. Taking the preliminary identification as the independent evidence, a final identification was obtained according to the D-S evidential fusion algorithm. Using the air-water two-phase flow regime identification in the horizontal pipe as an example, the implementing process of this method was described in detail. The results showed that the method of multi-characteristic information fusion could achieve a higher identification ability than that of single characteristic.
作者 周云龙 孙斌
出处 《化工学报》 EI CAS CSCD 北大核心 2006年第3期607-613,共7页 CIESC Journal
基金 吉林省科技发展计划项目(20040513)~~
关键词 气液两相流 小波包变换 BP神经网络 D-S证据理论 流型识别 gas-liquid two-phase flow wavelet packet transform BP neural network D-S evidential theory flow pattern identification
  • 相关文献

参考文献7

二级参考文献39

  • 1肖人彬,王雪.相关证据合成方法的研究[J].模式识别与人工智能,1993,6(3):227-234. 被引量:30
  • 2朱晓芸,杨建刚,何志钧.神经网络的多传感器数据融合基于新算法在障碍物识别中的应用[J].机器人,1997,19(3):166-172. 被引量:9
  • 3李后强 汪富泉.分形理论及其在分子科学中的应用[M].北京:科学出版社,1997.157-178.
  • 4孙斌.[D].Jilin:Northeast China Institute of Electric Power,2002.
  • 5孙斌.[D].吉林:东北电力学院,2002.
  • 6胡昌华.[D].西安:西安电子科技大学出版社,1999.
  • 7Mi Y, Ishii M, Tsoukalas L H. Vertical two-phase flow recognition using advanced instrumentation and neural networks. Nuclear Engineering and Design, 1998, 184:409-420.
  • 8Cai Y, Wambsganss M W. Application of chaos theory in identification of two-phase flow patterns and transitions in a small horizontal rectangular channel. ASME J Fluid Engineering, 1996, 118 (2): 383-390.
  • 9管天云,中南工业大学学报,1998年,29卷,217页
  • 10Lang Hong,IEEE Trans Aerospace Electronic Systems,1993年,29卷,2期,435页

共引文献138

同被引文献196

引证文献19

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部