摘要
The adsorption properties of nanometer-size TiO2 for V(Ⅴ ) were studied. The adsorption rate could reach above 99~ when the pH values were at the range of 4 10. The adsorption balance time was 10 min , the saturation capacity of adsorption of nanometer-size TiO2 to V(Ⅴ) was 6.43 mg per gram. Using 2 mL 1.5 mol · L^-1 NaOH as elution, we found the elution rate could reach 95%. A novel method of extreme-trace V(Ⅴ ) preconeentration with nanometer-size titanium dioxide and determination by graphite furnace atomic absorption spectroscopy (GFAAS) was advanced. The detection limit(3σ)of the method was 0.61μg ·L^-1 , and the relative standard deviation was 8.1% (n=6) of 2.5μg ·L-^1 V(Ⅴ). Environmental samples experiments were also conducted to test the feasibility of the method, and it came out that the recovery rates were between 91.2% and 102.0%.
The adsorption properties of nanometer-size TiO2 for V(Ⅴ ) were studied. The adsorption rate could reach above 99~ when the pH values were at the range of 4 10. The adsorption balance time was 10 min , the saturation capacity of adsorption of nanometer-size TiO2 to V(Ⅴ) was 6.43 mg per gram. Using 2 mL 1.5 mol · L^-1 NaOH as elution, we found the elution rate could reach 95%. A novel method of extreme-trace V(Ⅴ ) preconeentration with nanometer-size titanium dioxide and determination by graphite furnace atomic absorption spectroscopy (GFAAS) was advanced. The detection limit(3σ)of the method was 0.61μg ·L^-1 , and the relative standard deviation was 8.1% (n=6) of 2.5μg ·L-^1 V(Ⅴ). Environmental samples experiments were also conducted to test the feasibility of the method, and it came out that the recovery rates were between 91.2% and 102.0%.
基金
SupportedbytheNaturalScienceFoundationofHubeiProvince