期刊文献+

G-凸空间中的重合点组定理与极大极小组定理 被引量:1

The System of Coincidence Theorems and the System of Minimax Theorems in G-convex Spaces
下载PDF
导出
摘要 在较弱的假设条件下,利用连续单位分解定理,讨论了G-凸空间中的重合点组定理.作为其应用,也给出了相应的极大极小组定理.这些结论推广了近期文献的相关结论. In this paper, applying the continuous partition of unity theorem, we establish new systems of coincidence theorems in G-convex spaces under weaker assumptions. As their applications, some new systems of minimax theorems are given too. Our results generalize the corresponding results in recent literature.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第2期171-176,共6页 Journal of Sichuan Normal University(Natural Science)
基金 四川省教育厅自然科学重点基金资助项目
关键词 G-凸空间 转移紧开值 转移紧下半连续 重合点组定理 极大极小组定理 G-convex space Transfer compactly open-valued Transfer compactly lower semieontinuous Coincidence theorem Minimax theorem
  • 相关文献

参考文献4

二级参考文献19

  • 1丁协平.COINCIDENCE THEOREMS INVOKING COMPOSITES OF ACYCLIC MAPPINGS AND APPLICATIONS[J].Acta Mathematica Scientia,1999,19(1):53-61. 被引量:2
  • 2[1]Park S. Fixed points of better admissible maps on generalized convex spaces[J]. J Korean Math Soc,2000,37(6):885~899.
  • 3[2]Tarafdar E. Fixed point theorem in locally H-convex uniform spaces[J]. Nonlinear Anal, 1997,29: 971~ 978.
  • 4[3]Horvath C. Contractibility and general convexity[J]. J Math Anal Appl, 1991,156:341~ 357.
  • 5[4]Horvath C. Some results on multivalued mappings and inequalities without convexity[A]. Lin B L, Simons S. In Nonlinear and Convex Analysis[C]. New Your: Dekker, 1987.99~ 106.
  • 6[5]Wu X, Li F. Approximate selection theorems in H-spaces with applications[J]. J Math Anal Appl,1999,231:118~ 132.
  • 7[6]Yuan G X-Z. KKM Theory and Applications in Nonlinear Analysis[M]. New York:Marcel Dekker Inc,1999.
  • 8[7]Ding X P, Park J Y. Continuous selection theorem, coincidence theorem, and generalized equilibrium in L-convex spaces[J]. Comput Math Appl,2002,44:95~ 103.
  • 9[8]Ding X P, Park J Y. Collectively fixed point theorem and abstract economy in G-convex spaces[J]. Numer Funct Anal Optim,2002,23(7/8):779~ 790.
  • 10[9]Yu Z T, Lin L J. Continuous selection and fixed point theorems[J]. Nonlinear Anal,2003,52(2):445~455.

共引文献27

同被引文献11

  • 1徐家斌.G-凸空间中的KKM选择和KKM定理[J].内江师范学院学报,2007,22(4):31-33. 被引量:3
  • 2Knaster B,Kuratowski B, Mazurkiewicz S. Ein Beweis des Fixpunktsatzes fur n-dimensionale Simplexe [J]. Fundamenta rnathematicae, 1929,14 : 1:32-137.
  • 3Fan K. Fixed point and Minimax Theorems in Locally Convex Topological Linear Space [J]. Proceedings of the National Academy of Sciences, 1952,38 (2) : 121-126.
  • 4Tan K K. G-KKM Theorem, Minimax Inequalities and saddle points [J]. Nonlinear Anal ysis:Theory Methods and Applications,1997,30 (7):4151-4160.
  • 5Lin L J,Chang T H. S-KKM Theorems,Saddle Point and Minimax Inequalities [J]. Nonlinear Analysis: Theory, Methods & Applications, 1998,34 (1): 73-86.
  • 6X P Ding. Generalized L-KKM type theorems in L-convex space with applications [J]. Computers & Mathematics with Applications,2002,43 (10/11):1249-1256.
  • 7明万元,江慎铭,黄香蕉.G-凸空间上的广义G-S-KKM定理与应用[J].南昌航空大学学报(自然科学版),2007,21(4):5-7. 被引量:1
  • 8王彬.G-凸空间中的截口定理及其应用[J].内江师范学院学报,2010,25(2):26-28. 被引量:2
  • 9张红玲,陈滋利.抽象凸空间的广义向量平衡问题[J].四川师范大学学报(自然科学版),2010,33(4):447-449. 被引量:3
  • 10张秀之.H-空间上的不等式[J].南昌大学学报(理科版),2001,25(1):1-6. 被引量:3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部