期刊文献+

基于主动轮廓模型和水平集方法的图像分割技术 被引量:34

A Survey on Image Segmentation Using Active Contour and Level Set Method
下载PDF
导出
摘要 图像分割是计算机底层视觉中首要解决的关键问题。为了使人们对该领域现状有个概略了解,首先回顾了近十几年来基于主动轮廓模型的图像分割技术的发展概况;然后分类介绍了基于边界、基于区域和基于边界与区域的主动轮廓模型技术的演变及各自的优缺点,以及相应的能处理轮廓拓扑变化的稳定数值求解方法———水平集方法;最后展望了主动轮廓模型在图像对准中的应用。 Image segmentation is a classical and crucial problem in the fields of computer vision and image understanding. This paper gives a review on the variation based active contour model and level set method developed in recent years for image segmentation. The basic ideas of three types of active contour models, i. e. , edge based, region based and edge- region based models, are presented, their advantages and disadvantages are summarized, and a number of improvements are analyzed in detail. The level set method, which is numerically stable and capable of describing the topology change of the contour, is briefly introduced as an advanced numeric algorithm to solve these models. Finally, the potential application of active contour in image registration is discussed.
出处 《中国图象图形学报》 CSCD 北大核心 2006年第3期301-309,共9页 Journal of Image and Graphics
基金 国家自然科学基金项目(50390063 50475022) 上海市科委项目(04JC14050 03XD14008) 上海市青年科技启明星计划资助项目(04QMX1415)
关键词 计算机视觉 图像分割 水平集 曲线演化 主动轮廓 SNAKES模型 Mumford-Shah泛函 图像对准 computer vision, image segmentation, level set, curve evolution, active contour, Snakes model, Mumford-Shah functional, image registration
  • 相关文献

参考文献57

  • 1Canny J F.A computational approach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679 ~698.
  • 2Adams R,Bischof L.Seeded region growing[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16 (6):641 ~ 647.
  • 3Kass M,Witkin A,Terzopoulos D.Snakes:Active contour models[J].International Journal of Computer Vision,1988,1 (4):321 ~331.
  • 4Caselles V,Kimmel R,Sapiro G.Geodesic active contours[A].In:Proceedings 5th International Conference on Computer Vision[C],Boston,MA,USA,1995:694 ~699.
  • 5Caselles V,Kimmel R,Sapiro G.Geodesic active contours[J].International Journal of Computer Vision,1997,22(1):61 ~ 79.
  • 6Kiehenassamy S,Kumar A,Olver P,et al.Gradient flows and geometric active contour models[A].In:Proceedings of Fifth International Conference on Computer Vision[C],Cambridge,UK,1995:810 ~815.
  • 7周彦博,张志广.可变形物体的轮廓的提取[J].电子学报,1998,26(7):133-137. 被引量:7
  • 8贾春光,谭鸥,段会龙,吕维雪.基于变形轮廓的医学图象匹配方法[J].计算机辅助设计与图形学学报,1999,11(2):115-119. 被引量:16
  • 9朱付平,田捷,林瑶,葛行飞.基于Level Set方法的医学图像分割[J].软件学报,2002,13(9):1866-1872. 被引量:48
  • 10Sethian J A.Curvature and the evolution of fronts[J].Communication of Mathematical Physics,1985,101 (4):487 ~ 502.

二级参考文献15

  • 1Tang Gregory Y,Graph Image Process,1988年,42卷,297页
  • 2Jia Chunguang,Computer Assisted Radiologyand Surgery CAR’98 Tokyo Elsevier Science BV,1998年,24页
  • 3贾春光,国外医学.生物医学工程分册,1997年,20卷,5期,269页
  • 4Malladi, R., Sethian, J.A., Vemuri, B. Shape modeling with front propagation: a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17(2):158~174.
  • 5Bertalmio, M., Sapiro, G., Randall, G. Region tracking on level-set methods. IEEE Transactions on Medical Imaging, 1999,18(5): 448~451.
  • 6Masouri, A-R., Sirivong, B., Konrad, J. Multiple motion segmentation with level sets. In: Proceedings of the SPIE, Vol 3974. 2000. 584~595.
  • 7Paragios, N., Deriche, R. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(3):266~280.
  • 8Samon, C., Blanc-Feraud, L., Aubert, G., et al. Level set model for image classification. International Journal of Computer Vision, 2000,40(3):187~197.
  • 9Vincent, L., Soille, P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991,13(6):583~589.
  • 10Sijbers, J., Verhoye, M., Scheunders, P., et al. Watershed-Based segmentation of 3D mr data for volume quantization. Magnetic Resonance Imaging, 1997,15(6):679~688.

共引文献66

同被引文献315

引证文献34

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部