期刊文献+

场景无关约束下的特征匹配算法 被引量:4

Feature Correspondence Algorithm Based on Scene-independent Constraint
下载PDF
导出
摘要 鉴于对极约束是立体图像中完全不依赖于场景的重要几何约束,因此在特征匹配中起着很重要的作用,而且由于同形映射描述了平面场景的立体图像之间的对应关系,故大量文献中利用它对平面场景的立体图像对进行特征匹配。为了提高立体图像匹配精度和速度,提出了一种改进的场景无关约束下的特征匹配算法,该算法针对用对极约束和同形映射来进行曲面场景匹配的过程中同形估计容易出现降阶的情况,通过引入区域面积检测法来避免降阶情况的发生,以改善匹配结果;同时,由于在同形矩阵估计中,通过加入基础矩阵和同形矩阵本质上的约束关系,可使得原本独立的同形约束和对极约束关系很好地融入到匹配的整个过程中,从而快速有效地抑制了错误匹配的发生。对真实图像的实验分析证明,该改进算法具有迭代次数少、速度更快和匹配精度高的良好性能。 The epipolar geometry is the fundamental and important constraint between stereo image pair. It is independent of scene structure and plays a very important role in feature correspondence, Homography characterizes the correspondences between the two views due to the same plane scene which is extensively applied in plane scenes. To avoid the degenerate configuration when directly computing the homography given the epipolar geometry in curve scene, the area-detection approach is presented in this paper. In addition ,the constraint relation between homography matrix and fundamental matrix is involved in the homography estimation. The two schemes can greatly improve the matching precision and efficiency of the algorithm, Experimental results with real image data have illustrate the performance of the schemes.
出处 《中国图象图形学报》 CSCD 北大核心 2006年第3期342-348,共7页 Journal of Image and Graphics
关键词 图像校准 特征匹配 弱标定 同形矩阵 对极约束 image rectification, feature correspondence, weakly calibrated, homography, epipolar constraint
  • 相关文献

参考文献14

  • 1Faugeras O D.Three-dimensional computer vision:a geometric viewpoint[M].Cambridge,M A,USA:The MIT Press,1993.
  • 2ZHANG Zheng-you,Deriche R,Faugeras O D,et al.A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry[J].Artificial Intelligence,1995,78(10):87 ~ 119.
  • 3Han Joon Hee,Park Jong Seung.Contour matching using epipolar geometry[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(4):358 ~ 370.
  • 4吴福朝,胡占义.基本矩阵的5点和4点算法(英文)[J].自动化学报,2003,29(2):175-180. 被引量:6
  • 5Eric W,Grimson L.Computational experiments with a feature based stereo algorithm[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1985,7 (1):17 ~ 34.
  • 6Hoff W,Ahuja N.Surfaces from stereo:integrating feature matching,disparity estimation,and contour detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11 (2):121 ~ 136.
  • 7Sun C M.Fast stereo matching using rectangular subregioning and 3D maximum-surface techniques[J].International Journal of Computer Vision,2002,47(1/2/3):99 ~ 117.
  • 8Fornland P,Schnorr C.A robust and convergent iterative approach for determining the dominant plane from two views without correspondence and calibration[A].In:Proceedings IEEE Conference Computer Vision Pattern Recognition[C],San Juan,Puerto Rico,1997:508 ~513.
  • 9Lourakis M,Argyros A,Orphanoudakis S.Detecting planes in and uncalibrated image pair[A].In:Proceedings 13th British Machine Vision Conference[C],Cardiff,UK,2002:587 ~ 596.
  • 10Lourakis M,Tzurbakis S,Argyros A,et al.Feature transfer and matching in disparate stereo views through the use of plane homographies[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25 (2):271 ~ 276.

二级参考文献13

  • 1[1]Luong Q T, Faugeras O D. The fundamental matrix: theory, algorithms, and stability analysis. Inter. Journal of Computer Vision , 1996, 17:43~75
  • 2[2]Amnon Shashua. Algebraic functions for recognition. IEEE-T PAMI , 1995, 17(8):779~789
  • 3[3]Hartley R I. Computation of quadrifocal tensor. In: Proc. ECCV'98, 1998, I:20~35
  • 4[4]Heyden A. A common framework for multiple view tensors. In: Proc. ECCV'98,1998, I:3~19
  • 5[5]Amnon Shashua, Shai Avidan. The rank-4 constraint in multiple (>=3) view geometry. In: Proc. ECCV'96, 1996
  • 6[6]Lihi Zelnik-Manor, Michal Irani. Multi-view subspace constraints on homographies. In: Proc. ICCV'99, 1999. 710~715
  • 7[7]Vetterling W T, Press W H, Teukolsky S A, Flannery B P. Numerical Recipes in C. Cambridge, MA: Cambridge University Press, 1992
  • 8Koch R, Pollefeys M, Van Gool L.Multi viewpoint stereo from uncalibrated video sequences. In: Proceedings EuropeanConference on Computer Vision, Freiburg, Germany, 1998,I: 55~71
  • 9Faugeras O, Rorbert L, Laveaw S. 3-D reconstruction of urban scenes from imagesequences. Computer Vision and Image Understanding, 1998, 69(3): 392~309
  • 10Hartley R I. Kruppa's equations derived from the fundamental matrix. IEEETransactions on Pattern Analysis and Machine Intelligence, 1997, 19(2): 100-102

共引文献11

同被引文献29

引证文献4

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部