期刊文献+

带约束广义变分不等式问题的一般分解算法的收敛性分析(英文)

Convergence Analysis of General Decomposition Algorithm for Solving General Constrained Variational Inequality Problems
下载PDF
导出
摘要 本文考虑如下带约束广义变分不等式问题的增广Lagrangian对偶理论:寻找一点x∈Γ使满足,〈F(x),y-x〉+φ(x,y)-φ(x,x)≥0,y∈Γ,其中,Γ={y∈X|Θ(y)∈-C}.对于求解这类一般变分不等式问题的基于增广Lagrangian对偶理论分解算法,本文给出了算法的收敛性分析. In this paper, we generalize the augmented Lagrangian duality theory for the general variational inequality problem (GVI) defined as follow: find x^*∈Г such that (F(x^*),y-x^*)+φ(x^*,y)-φ(x^*,x^*)≥0,νy∈Г, where Г={y∈X|Θ(y)∈-C}. We propose a general decomposition algorithm based on the augmented Lagrangian for solving this complex general variational inequality problems with the coupling constraints.
出处 《应用数学》 CSCD 北大核心 2006年第2期236-245,共10页 Mathematica Applicata
基金 SupportedbytheNationalNaturalSciencesFoundationofChina(70432001),grantedbyGraduatedStudentInnovationFoundationofFudanUniversity
关键词 一般变分不等式问题 增广Lagrangian 分解算法 广义单涮性 上强制性 General variational inequality Augmented Lagrangian Decomposition methods Generalized monotonicit y Co-coercivity
  • 相关文献

参考文献9

  • 1Marcotte P,Wu J H. On the convergence of projection methods: Application to the decomposition of affine variational inequalities[J].Journal of Optimization Theory and Applications, 1995,85 : 347 - 362.
  • 2He B S,Liao L Z, Yang H. Decomposition method for a class of monotone variational inequality problems[J]. Journal of Optimization Theory and Applications, 1999,103,603-622.
  • 3Wang S L,Liao L Z. Decomposition method with a variable parameter for a class of monotone variationalinequality problems[J]. Journal of Optimization Theory and Applications, 2001,109 : 415 - 429.
  • 4Noor M A. General algorithm for variational inequalities ( Ⅰ )[J]. Math. Jap. ,1993.38:47-53.
  • 5Zhu D L. Augmented lagrangian duality theory, and decomposition methods for variational inequality problems[J]. Journal of Oplimization Theory and Applications, 2003,117 : 195-216.
  • 6Zhu D L, Marcotte P. Co-coercivity and its role in the convergence of iterative schemes for sloving variational inequalities[J]. SIAM. Journal of Optimization, 1996,6: 714-726.
  • 7Zhu D L, Marcotte P. New classes of generalized monotonicity[J]. Journal of Optimization Theory andApplications, 1995,87:457-471,
  • 8Cohen G, Zhu D L. Decomposition coordinaiton methods in large scale optimization problems: The nondifferentiable case and the use of augmented Lagrangians[A]. in Advances in Large Scale Systems Theory and Applications 1,edited by J B Cruz.JAI Press.Greenwich,Connecticut. USA,1984,203-266.
  • 9Ekeland I,Teman R. Convex Analysis and Variational Problems[M]. North Holland: Amsterdam, Netherlands, 1976.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部