期刊文献+

基于一类混合PSO算法的函数优化与模型降阶研究 被引量:5

Study on Function Optimization and Model Reduction Based on a Class of Hybrid PSO Algorithm
下载PDF
导出
摘要 为了克服传统微粒群优化(PSO)算法容易早熟收敛和陷入局部极小的缺点,通过对PSO算法特点和行为的分析,提出一类有机结合模拟退火(SA)算法和PSO算法的混合算法。混合算法不仅利用PSO的机制进行群体全局搜索,而且利用模拟退火的思想恰当地选择微粒的最好历史位置,保障了群体多样性,并有效平衡了算法的探索和趋化能力,进而改善了算法的优化性能。基于典型复杂函数优化问题和模型降阶问题的仿真结果表明,所提混合算法具有很好的优化质量、搜索效率和鲁棒性。 To overcome the weaknesses, such as easy to be prematurely convergent and be trapped in local optima for classic particle swarm optimization (PSO) algorithms, a class of hybrid algorithm is proposed by analyzing the features and behaviors of PSO and by reasonably combining simulated annealing (SA) and PSO. By applying PSO to perform populatlon-based global search and by utilizing the idea of SA to suitably select the best historic positions for particles, the optimization performances of the hybrid algorithm can be improved due to the maintenance of swarm diversity and the balance of exploration and exploitation. The simulation results of typical complex function optimization problems and model reduction problem show that, the proposed hybrid algorithm has good optimization quality, searching efficiency and robustness.
出处 《化工自动化及仪表》 EI CAS 2006年第2期9-13,共5页 Control and Instruments in Chemical Industry
基金 国家自然科学基金项目(60204008 60374060 60574072) 国家"973"计划项目(2002CB312200)
关键词 微粒群优化 模拟退火 混合算法 函数优化 模型降阶 particle swarm optimization simulated annealing hybrid algorithm function optimlzation model reduction
  • 相关文献

参考文献12

  • 1KENNEDY J,EBERHART R C,SHI Y.Swarm Intelligence[ M].San Francisco:Morgan Kaufrmarn Publishers,2001.
  • 2刘波,王凌,金以慧,黄德先.微粒群优化算法研究进展[J].化工自动化及仪表,2005,32(3):1-7. 被引量:39
  • 3KIRKPATRICK S,GELATT C D,VECCHI M P.Optimization by Simulated Annealing[ J ].Science (S0036-8075),1983,220:671-680.
  • 4王凌,李文峰,郑大钟.基于一类混合策略的模型参数估计和控制器参数整定研究[J].控制与决策,2001,16(5):530-534. 被引量:13
  • 5WANG L,ZHENG D Z.An Effective Hybrid Optimization Strategy for Job-shop Scheduling Problems[ J ].Computers and Operations Research(S0305-0548),2001,28(6):585-596.
  • 6王凌,李令莱,郑大钟.非线性系统参数估计的一类有效搜索策略[J].自动化学报,2003,29(6):953-958. 被引量:14
  • 7WANG L,LI L L,TANG F.Directing Orbits of Chaotic Systems Using a Hybrid Optimization Strategy[ J ].Physics Letters A (S0375-9601),2004,324(1):22-25.
  • 8WANG L,LI L L,TANG F.Optimal Reduction of Models Using a Hybrid Searching Strategy[ J ].Applied Mathematics and Computation (S0096-3003),2005,168 (2):1357-1369.
  • 9CLERC M.The Swarm and the Queen:Towards a Deterministic and Adaptive Particle Swarm Optimization[ C ]//Proceedings of the IEEE International Conference on Evolutionary Computation.1999:1951-1957.
  • 10YI D,GE X R.An Improved PSO-based ANN with Simulated Annealing Technique[ J ].Neurocomputing (S0925-2312),2005,63:527-533.

二级参考文献74

  • 1黄炯,邬永革,李军,王执铨.基于遗传算法的系统在线辨识[J].信息与控制,1996,25(3):171-176. 被引量:13
  • 2Hwang C, Hwang J H. A new two-step iterative method for optimal reduction of linear SISO systems[J]. J of Franklin Institute,1996,333B(5):631-645.
  • 3Luus R. Optimal reduction of linear systems[J]. J of Franklin Institute,1999,336(3):523-532.
  • 4Cheng S L, Hwang C. Optimal approximation of linear systems by a differential evolution algorithm[J]. IEEE Trans on Systems, Man and Cybernetics-A,2001,31(6):698-707.
  • 5Wang L, Zheng D Z. Simulated annealing with the state generator based on Cauchy and Gaussian distributions[J]. J of Tsinghua University,2000,40(9):109-112.
  • 6Wang L, Zheng D Z. An effective hybrid optimization strategy for job-shop scheduling problems[J]. Compu-ters and Operations Research,2001,28(6):585-596.
  • 7Kennedy J,Eberhart R C,Shi Y.Swarm Intelligence[M].San Francisco:Morgan Kaufman Publishers,2001.
  • 8Shi Y,Eberhart R C.A Modified Particle Swarm Optimizer[A].Proceedings of the IEEE International Conference on Evolutionary Computation[C].1998.69-73.
  • 9Shi Y,Eberhart R C.Fuzzy Adaptive Particle Swarm Optimization[A].Proceedings of the IEEE Congress on Evolutionary Computation[C].2001.101-106.
  • 10Clerc M,Kennedy J.The Particle Swarm:Explosion,Stability,and Convergence in a Multi-dimensional Complex Space[J].IEEE Transactions on Evolutionary Computation,2002,6:58-73.

共引文献64

同被引文献97

引证文献5

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部