摘要
讨论了放热反应物在满足热爆炸条件时临界表面温度梯度Γ_(cr)和热传递条件(Biot数Bi)的关系。在Frank-Kamenetskii边界条件下,平板、圆柱和球形反应物具有相同的Γ_(cr)值(Bi→∞,Γ_(cr)=2);在Semenov边界条件下,所有反应物形状也具有相同的Γ_(cr)值(Bi=0,Γ_(cr)=0)。对于普适热传递条件(0≤Bi≤∞),Γ_(cr)的值是Biot数Bi和反应物形状的函数。本文提出了一种新的计算方法,并给出了一些经典数值。还利用渐近分析方法,给出了渐近分析公式。
The dependence on the heat - transfer conditions (Biot number Bi) of the temperature gradient at the surface , Γ , of an exothermic reactant mass at criticality for thermal explosion is presented .Bodies of slab .cylindrical and spherical geometries have the same value of Γcr under the Frank - Kamenetskii boundary condition (Bi →∞ , Γcr=2 ) and under the Semenov boundary condition (Bi →0 , Γcr = 0 ). For the generalized boundary conditions (0≤Bi≤∞) the critical surface temperature gradient depends on the Biot number and the shape of the reactants . Numerical values are calculated using a new method . Some asymptotic expressions are derived using the method of asymptotic analysis .
出处
《北京理工大学学报》
EI
CAS
CSCD
1990年第3期8-15,共8页
Transactions of Beijing Institute of Technology
基金
中国科学院青年奖励研究基金
关键词
热爆炸
温度梯度
传热学
thermal explosion , temperature gradient , heat transfer theory , critical temperature / generalized heat transfer , surface temperature gradient .