期刊文献+

独立成分分析的研究进展 被引量:31

Advances of Research in Independent Component Analysis
下载PDF
导出
摘要 介绍了独立成分分析(ICA)的基本模型及其假设、含混性、非高斯性度量和通用求解过程。讨论了目前ICA的几个研究方向的发展现状和面临的问题,分析了ICA基本模型和几种扩展模型的求解算法,包括盲反卷积、卷积混和的盲分离、非线性瞬时混合的盲分离。提出了ICA未来理论和应用研究中的开放课题。 The standard model of Independent Component Analysis (ICA) and its assumptions, ambiguities, nongaussianity measures and general solution were introduced. Then, the state of the art and the challenge problems in ICA research field are discussed. The algorithms for standard and extended ICA models, including blind deconvolution, blind separation of convolutive mixtures, nonlinear instantaneous mixtures, are briefly analyzed. Finally, the open areas of theoretic and applied research in ICA are brought forward.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第4期992-997,1001,共7页 Journal of System Simulation
基金 湖南省教育厅科研项目(05C776) 湖南城市学院科技计划项目(20057306)
关键词 独立成分分析 盲源信号分离 非高斯性 神经网络 independent component analysis blind source separation non-Gaussianity neural networks
  • 相关文献

参考文献39

  • 1Pierre Comon.Independent component analysis,a new concept?[J].Signal Processing,Special Issue on Higher Order Statistics (S0165-1684).1994,36(3):287-314.
  • 2Aapo Hyvarinen,Erkki Oja.Independent component analysis:algorithms and applications[J].Neural Networks (S0893-6080).2000,13(4-5):411-430.
  • 3Aapo Hyvarinen.Survey on Independent Component Analysis[J].Neural Computing Surveys (S1093-7609).1999,2:94-128.
  • 4杨竹青,李勇,胡德文.独立成分分析方法综述[J].自动化学报,2002,28(5):762-772. 被引量:148
  • 5Aapo Hyvarinen,Juha Karhunen,Erkki Oja.Independent Component Analysis[M].New York:John Wiley & Sons,2001.
  • 6Ella Bingham.Advances in Independent Component Analysis with Applications to Data Mining[D].Helsinki University of Technology,December 2003.
  • 7Anthony J Bell,Terrence J Sejnowski.An information-maximization approach to blind separation and blind deconvolution[J].Neural Computation (S0899-7667).1995,7(6):1129-1159.
  • 8Te-Won Lee,Mark Girolami,Terrence J.Sejnowski.Independent Component Analysis using an Extended Infomax Algorithm for Mixed Sub-Gaussian and Super-Gaussian Sources[J].Neural Computation (S0899-7667).1999,11(2):417-441.
  • 9Dinh-Tuan Pham,P Garat.Blind separation of mixture of independent sources through a quasi-maximum likelihood approach[J].IEEE Trans.on Signal Processing (S1053-587X).1997,45(7):1712-1725.
  • 10S Amari,A Cichocki,H H Yang.A new learning algorithm for blind source separation[C]//Advances in Neural Information Processing Systems.San Mateo,1996.8:757-763.

二级参考文献3

  • 1孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993..
  • 2焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 3章照止 林须端.信息论与最优编码[M].上海:上海科学技术出版社,1993..

共引文献163

同被引文献305

引证文献31

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部