摘要
通过对应力—应变本构关系式的精确微分,推导了非线性弹性有限元分析中的一致性切线模量,从而保持了牛顿迭代法固有的平方收敛率特性。指出了某些文献中的错误,并以数值算例显示了本文方法的简单、有效。
A consistent tangent modulus matrix for nonlinear elastic finite element analysis is deduced to preserve the asymptotic rate of quadratic convergency possessed by the Newton iteration method.Some misunderstandings about the tangent moduli in previous references are pointed out,and numerical calculation samples are given to show the simplicity and effectiveness of the present method.
关键词
有限元
非线性弹性
切线模量
finite element method
nonlinear elasticity
Newton iteration
consistent tangent moduli