期刊文献+

圆对称轮廓波变换的构造 被引量:12

Construction of the Circular Symmetric Contourlet Transform
下载PDF
导出
摘要 提出了具有类似于视皮层变换频带划分的圆对称轮廓波变换.在该变换中,圆对称滤波器组将图像分解为多个不同分辨率的细节子带和一个低频子带,方向滤波器组再将各细节子带分解为方向子带.文中利用遗传算法设计满足重构要求的圆对称滤波器组,应用伯恩斯坦多项式设计的映射函数将9/7双正交滤波器组映射为扇形滤波器组.利用自适应阈值法对Lena图像去噪的实验结果表明,两种圆对称轮廓波变换(CSCT1和CSCT2)的去噪性能与轮廓波变换相比有显著提高. The contourlet transform is a novel multiscale geometric analysis method. It can represent geometric features such as edges and texture more effectively than wavelet transform. In this paper, the circular symmetric contourlet transform (CSCT) which has similar frequency partition with cortex transform is proposed. In the CSCT, the circular symmetric filter banks decomposes image into multi-resolution detail subbands and one low-frequency subband, and the detail subbands are decomposed into directional subbands by directional filter bank. The circular symmetric filter bank satisfying reconstruction conditions is designed by genetic algorithm. The 9/7 biorthogonal filter bank is mapped to fan filter bank by the mapping function which derived from the Bernstein polynomial. Denoising experiments for Lena image using adaptive thresholding show that the denoising performance of the CSCT1 and CSCT2 outperform the contourlet transform significantly.
出处 《计算机学报》 EI CSCD 北大核心 2006年第4期652-657,共6页 Chinese Journal of Computers
基金 河北省教育厅自然科学项目基金(2004124)资助
关键词 轮廓波变换 圆对称滤波器组 伯恩斯坦多项式 遗传算法 图像去噪 algorithm contourlet transform circular symmetric filter bank Bernstein polynomials genetic image denoising
  • 相关文献

参考文献14

  • 1Candes E.J,Donoho D.L..Curvelets-A surprisingly effective nonadaptive representation for objects with edges.In:Cohen A,Rabut C,Schumaker L.L.eds..Curve and Surface Fitting.Saint-Malo:Vanderbilt University Press,1999,105~120
  • 2Candes E.J..Harmonic analysis of neural networks.Applied and Computational Harmonic Analysis,1999,6(2):197~218
  • 3Starck J.L,Candes E.J,Donoho D.L..The curvelet transform for image denoising.IEEE Transactions on Image Processing,2002,11(6):670~684
  • 4Do M.N,Vetterli M..Contourlets and sparse image expansions.In:Proceedings of the International Society for Optical Engineering,San Diego,USA,2003,560~570
  • 5Do M.N,Vetterli M..The contourlet transform:An efficient directional multiresolution image representation.IEEE Transactions on Image Processing,2005,14(12):2091~2106
  • 6Do M.N,Vetterli M..Framing pyramids.IEEE Transactions on Signal Processing,2003,51(9):2329~2342
  • 7Bamberger R.H,Smith M.J.T..A filter bank for the directional decomposition of images:Theory and design.IEEE Transactions on Signal Processing,1992,40(4):882~893
  • 8Viscito E,Allebach J.P..The analysis and design of multidimensional FIR perfect reconstruction filter banks for arbitrary sampling lattices.IEEE Transactions on Circuits and Systems,1991,38(1):29~41
  • 9Watsom A.B..The cortex transform:Rapid computation of simulated neural images.Computer Vision,Graphics,and Image Processing,1987,39(3):311~327
  • 10Phoong S.M,Kim C.W,Vaidyanathan P.P,Ansari.R..A new class of two-channel biorthogonal filter banks and wavelet bases.IEEE Transactions on Signal Processing,1995,43(3):649~665

共引文献16

同被引文献143

引证文献12

二级引证文献138

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部