期刊文献+

新的混合智能系统R-FC-DENN 被引量:1

New hybrid intelligent system: R-FC-DENN
下载PDF
导出
摘要 以认知心理学、模型集成理论为基础,构建了集粗糙集理论、聚类理论、模糊逻辑理论、遗传算法理论、人工神经网络理论于一体的一个新的混合智能系统R-FC-DENN。它首先通过粗糙集将输入样本进行约简,然后用聚类技术将简化后的样本进行聚类,对不同的聚类使用经过遗传算法改进了的神经网络进行训练,接着将这些经过不同神经网络训练的样本用模糊权值组合起来,放入新的用遗传算法改进了的神经网络再进行训练,从而完成整个训练过程。最后用UCI下的实际数据库对提出的混合智能系统R-FC-DENN的实用性进行了检验,证明方法是可行的。 Based on the cognitive psychology and aggregative model theory, a new hybrid intelligent system-R-FC-DENN incorporating rough set, clustering theory, fuzzy logic, genetic algorithm and artificial neural network is propased. Firstly, R-FC-DENN uses the rough set to reduce the data, then it clusters the data by the clustering theory. After that, it is the clustered data train with improved ANN. Subsequently, the trained data are fabricated by fuzzy weight. Lastly, the fabricated data are trained by another improved ANN and thus the whole process of training is completed. In the end the UCI's databases are employed to prove the utility of the new HIS-R-FC-DENN and a satisfactory result is obtained.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2006年第3期448-453,共6页 Systems Engineering and Electronics
基金 国家自然科学基金资助课题(70571016 70471011)
关键词 混合智能系统 人工神经网络 粗糙集 遗传算法 hybrid intelligent system artificial neural network rough set genetic algorithm
  • 相关文献

参考文献11

  • 1Minsky M.Logic versus analogical or symbolic versus connectionist or neat versus scruffy[J].AI Magazine,1991,12(2):35-51.
  • 2Meesad P.A hybrid intelligent system and its application to medical diagnosis[D].Ph.D.Oklaborna State University,2002.
  • 3Langari R,Won J.Intelligent energy management agent for a parallel hybrid vehicle-Part I:System architecture and design of the driving situation identification process[J].IEEE Trans.Veh.Technol,2005,54(3):925-934.
  • 4Hamedi M.Intelligent fixture design through a hybrid system of artificial neural network and genetic algorithm[J].Artif.Intell Rev.,2005,23(3):295-311.
  • 5张文修 吴伟志 梁吉业.粗糙集理论与方法[M].北京:科学出版社,2003.107-112.
  • 6高新波,裴继红,谢维信.模糊c-均值聚类算法中加权指数m的研究[J].电子学报,2000,28(4):80-83. 被引量:158
  • 7Chiu S.Fuzzy model identification based on cluster estimation[J].Journal of Intelligent & Fuzzy Systems,1994,2(3):
  • 8Fine T L,Lauritzen S L.Feedforward neural network methodology[M].New York:Springer-Verlag,1999.
  • 9Babu B V,Chaturvedi Gaurav.Evolutionary computation strategy for optimization of an alkylation reaction[C] //Proc.of International Symposium & 53rd Annual Session of IIChE (CHEMCON-2000),2000:18-21.
  • 10UCI Machine Learning Repository[DB/OL].http://www.ics.uci.edu/~mlearn/MLRepository.html.2005.

二级参考文献6

共引文献260

同被引文献11

  • 1王刚,高阳,夏洁.基于差异进化算法的人工神经网络快速训练研究[J].管理学报,2005,2(4):450-454. 被引量:10
  • 2黎俊锋,朱锋峰.基于样本密度的FCM改进算法[J].科学技术与工程,2007,7(4):636-638. 被引量:12
  • 3张文修 吴伟志 梁吉业.粗糙集理论与方法[M].北京:科学出版社,2003.107-112.
  • 4MINSKY M.Logic versus analogical or symbolic versus connectionist or neat versus scruffy[J].Al Magazine,1991,12(2):35-51.
  • 5MEESAD P.A hybrid intelligent system and its application to medical diagnosis[D].Oklahoma:Oklahoma State University,2002.
  • 6LANGARI R,WON J.Intelligent energy management agent for a parallel hybrid vehicle-Part I:System architecture and design of the driving situation identification process[J].IEEE Transaction on Vehicular Technology,2005,54(3):925-934.
  • 7HAMEDI M.Intelligent fixture design through a hybrid system of artificial neural network and genetic algorithm[J].Artificial Intelligent Review,2005,23(3):295-311.
  • 8WANG X,YANG J.Feature selection based on rough sets and particle swarm optimization[J].Pattern Recognition Letters,2007,28(4):459-471.
  • 9CHIU S.Fuzzy model identification based on cluster estimation[J].Journal of Intelligent and Fuzzy Systems,1994,2(3):267-278.
  • 10YAN J Y,LING Q,SUN D M.A differential evolution with simulated annealing updating method[J].In International Conference on Machine Learning and Cybernetics,2006:2103-2106.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部