摘要
证明了广义最速下降逼近强收敛于定义在一致光滑实Banach空间的真子集上的有界拟增生算子的零点的一充要条件,几个相关的结果处理含-强拟增生算子方程解或拟伪压缩映射不动点的强收敛性.所得的这些结果推广和统一了许多前人的近期相应结果.
A necessary and sufficient condition is proved for a generalized steepest descent approximation to converge to the zeros of bounded quasi-accretive operators defined on proper subsets of uniformly smooth real Banach space. Some related results deal with the strong con- vergence of the scheme to a solution of equations involving φ-strongly quasi-accretive operators and fixed points of quasi-pseudocontractive map. These results extend and unify the recent corresponding ones by many authors.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2006年第2期297-305,共9页
Acta Mathematica Scientia
基金
国家自然科学基金(10271025)
浙江省自然科学基金(102002)资助
关键词
拟增生算子
φ-强拟增生算子
拟伪压缩算子
一致光滑空间
广义最速下降逼近
非线性方程的零点
Quasi-accretive operators
φ-strongly quasi-accretive operators
Quasi-pseudocontractive operators
Generalized steepest descent approximation
Zeros of nonlinear operatorsequation.