期刊文献+

给定切失混合有理插值曲线 被引量:1

Blending Rational Interpolation Curves with Given Tangent Vector
下载PDF
导出
摘要 在曲线的设计中,尤其是反向设计,通常所取的数据点都是关键点,譬如:逗留点(曲线上的一阶导失与二阶导失叉积为零矢量的点)。因此,设计的曲线希望在该数据点也是逗留点。利用三角函数对三次Bernstein基函数改进为混合基函数,该基函数具有规范性,对称性等类似Bernstein基函数的性质和特点。给定一组确定切方向的数据点,用此基函数,可以构造一种带形状因子的有理插值曲线。生成的有理插值曲线具有G2-连续和曲率连续,插值点均是逗留点等特点。若通过加强形状因子的条件限制可达到C2-连续,并可以通过修改形状因子来调节曲线的形状,并且这种影响是局部的。最后还给出了实例,并与三次Hermite插值曲线进行了比较。 The data,which choosed in designing curve,especial in reverse designing,are usually key points,such as standing points.Blending basic functions,improved by cubic Bernstein polynomial basic functions with trigonometric functions,have much properties resembling latter.In this paper,the rational interpolation curve generated with new basic 2 functions by analogy B6zier curve,which is G^2-continuity and curvature continuity.In addition,all interpolation data points are standing points,the problem of constructing a space new interpolation C^2-continuity curves is considered,and the interpolation curve can be adjusted through changing shape parameters of each interpolation points.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第9期63-66,共4页 Computer Engineering and Applications
关键词 混合基函数 有理插值曲线 形状因子 blending basis function,rational interpolation curves,shape parameters
  • 相关文献

参考文献8

  • 1Wenping Wang,Barry Joe.Interpolation on quadric surfaces with rational quadratic spline curves[J].Computer Aided Geometric Design,1997; 14:207~230
  • 2Q Duan,K Djidjeli,W G Price et al.Weighted rational cubic spline interpolation and its application[J].Journal of Computational and Applied Mathematics,2000; 117:121~135
  • 3D S Meek,B H Ong,D J Walton.Constrained interpolation with Rational Cubics[J].Computer Aided Geometric Design,2003; 20:253~275
  • 4Xuli Han.Quadration Trigonometric Polynomial Curves with a Shape Parameter[J].Computer Aided Geometric Design,2002; 19:503~512
  • 5张三元,汪国昭.曲率连续的有理二次样条插值的一种优化方法[J].软件学报,2001,12(8):1190-1196. 被引量:5
  • 6C Zhang,Fuhua (Frank) Chen.Constructing Parametric Quadratic Curves[J].Journal of Computational an Applied Mathematics,1999; 102:21~36
  • 7C Zhang,Fuhua(Frank)Chen,Kenjiro T Miura.A method for determining knots in parametric curve interpolation[J].Computer Aided Geometric Design,1998; 15:399~416
  • 8M Bastian-Walther et al.Range Restricted Interpolation Using Gregory's Rational Cubic Splines[J].Journal of Computational and Applied Mathematics,1999; 103:221~237

二级参考文献6

  • 1沈炎 金德安 等.一种双圆弧样条[J].浙江大学学报,1981,9(3):83-91.
  • 2Zhang Sanyuan,计算机学报,2000年,23卷,2期,153页
  • 3Li J,CAGD,1990年,7卷,2期,209页
  • 4Jin Tongguang,浙江大学学报,1981年,9卷,3期,83页
  • 5金通--,浙江大学学报,1981年,9卷,3期,83页
  • 6张三元.基于代数曲线段的G^2连续的曲线造型方法[J].计算机学报,2000,23(2):153-157. 被引量:12

共引文献4

同被引文献11

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部