期刊文献+

基于差异进化算法的前馈神经网络在大坝变形监测中的应用 被引量:14

Application of feed-forward neural networks to dam deformation monitoring based on differential evolution algorithm
下载PDF
导出
摘要 针对当前大坝安全监测中广泛采用的回归模型欠拟合的不足,提出了基于差异进化算法的前馈神经网络模型。差异进化算法是基于种群策略的全局优化搜索算法,具有应用简单、收敛快的优点。采用该法训练的神经网络可以有效避免常规BP(back propagation)神经网络收敛于局部极小点的缺陷。将提出的方法应用于某拱坝的变形监测,通过计算表明,应用DE(differential evotntion)神经网络模型预报大坝变形的精度比常规回归模型和BP神经网络模型均有所提高。 The model of feed-forward neural networks trained by differential evolution (DE) algorithm is presented to overcome the shortcoming of traditional regression model widely used in monitoring the safety and deformation of dams. DE algorithm is a population-based one in global optimization, with the merits of being easy to use and fast convergence. The neural networks trained by DE can effectively avoid the problem of being stuck in any local minimum that often happens in classical BP neural networks model. The case study of deformation monitoring of an arch dam shows that the DE neural networks model proposed results in a better precision, comparing with traditional regression model and BP neural networks model.
出处 《岩土力学》 EI CAS CSCD 北大核心 2006年第4期597-600,共4页 Rock and Soil Mechanics
基金 中国博士后科学基金资助(No.20040350089)
关键词 大坝变形监测 差异进化算法 前馈神经网络 BP神经网络 回归模型 dam deformation monitoring differential evolution algorithm feed-forward neural networks BP neural networks regression model
  • 相关文献

参考文献9

  • 1陈维江,马震岳,董毓新.建立大坝安全监控数学模型的一种新方法[J].水利学报,2002,33(8):91-95. 被引量:17
  • 2吴云芳,李珍照.改进的BP神经网络模型在大坝安全监测预报中的应用[J].水电站设计,2002,18(2):21-24. 被引量:19
  • 3高平,薛桂玉.基于小波网络的大坝变形监测模型与预报[J].水利学报,2003,34(7):107-110. 被引量:28
  • 4杨杰,吴中如,顾冲时.大坝变形监测的BP网络模型与预报研究[J].西安理工大学学报,2001,17(1):25-29. 被引量:74
  • 5Udo Seiffert.Multiple layer perceptron training using genetic algorithms.european symposium on artificial neural networks[A].9th European Symposium on Artificial Neural Networks[C].Bruges:D-Facto,2001.159-164.
  • 6Storn R,Price K.Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces[R].Technical Report TR-95-012.Berkeley:International Computer Science Institute,1995.
  • 7Rainer Storn,Ken Price.Differential evolution-a simple and efficient heuristic for global optimization over continous spaces[J].Journal of Global Optimization,1997,11:341-359.
  • 8Dervis Karaboga,Selcuk Okdem.A simple and global optimization algorithm for engineering problems:differential evolution algorithm[J].Turkish Journal of Engineering and Environmental Sciences,2004,12(1):53-60.
  • 9Jarmo Ilonen,Kamarainen Jon,Lampinen J.Differential evolution training algorithm for feed-forward neural networks[J].Neural Processing Letters,2003,17:93 -105.

二级参考文献23

  • 1温岫,薛玺成.高坝、岩基原位监测位移的混合模型研究及其应用[J].大坝观测与土工测试,1993,17(2):14-18. 被引量:4
  • 2吴中如.混凝土坝安全监控的确定性模型及混合模型[J].水利学报,1989,21(5):64-70. 被引量:49
  • 3赵振宇 徐用懋.模糊理论和神经网络的基础与应用[M].北京,南宁:清华大学出版社,广西科学技术出版社,1997.105-106.
  • 4周明 孙树栋.遗传算原理及应用[M].北京:国防工业出版社,2000..
  • 5吴中如 刘观标.混凝土坝的位移稳定性模型研究[J].大坝观测及土工测试,1987,(11):17-25.
  • 6彭虹 史宇澄.大坝监测资料分析模型的分析[J].大坝观测与土工测试,1990,(4):9-14.
  • 7[3]Kennecly M,Pchua L O. Neural networks for nonlinear programming[J]. IEE E,Trans,Circuits,1988,35:554-562.
  • 8[4]Aribshahi P. Fuzzy control of backpropagation[A]. IEEE Fuzzy’96,1996.96 7-972.
  • 9[5]Derrick H,Widrow B. Neural networks for self-learning control system[J ]. IEEE Control Systems Mangzine,1990,4(1):18-23.
  • 10[6]Khalid M,Omatu S. A neural network based control scheme with an adaptive neural model reference structure[A]. IJCNN,Singapore,1991.2128-2133.

共引文献120

同被引文献130

引证文献14

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部