期刊文献+

基于微分模型的改进微粒群算法 被引量:9

Modified Particle Swarm Optimization Based on Differential Model
下载PDF
导出
摘要 针对基本微粒群算法的微分模型,从解的存在惟一性角度出发,发现最大速度常数虽然能保证解的存在性,但却降低了算法的全局搜索性能.为了提高算法的计算效率,提出了一种不含最大速度常数的微分模型,该模型首先将速度向量与位置向量等同对待,两者同时对空间进行搜索,并讨论了该模型解的稳定性条件,给出了相应的改进微粒群算法,能有效地提高算法效率.仿真结果证明了算法的有效性. Through mechanism analysis of differential model of particle swarm optimization, the effect of the maximum speed constant is analyzed and the results are shown that can guarantee the existence of solution, but decrease the global search capability. A new broaden differential model is proposed, which treats the velocity and position vectors equally and searches the space at the same time. And the stability condition is also discussed, Thus a new modified particle swarm optimization algorithm is given. The optimization computing of some examples is made to show that the new algorithm has better global search capacity and rapid convergence rate.
出处 《计算机研究与发展》 EI CSCD 北大核心 2006年第4期646-653,共8页 Journal of Computer Research and Development
基金 教育部科学技术研究重点项目(204018)
关键词 微粒群算法 微分模型 速度向量 稳定性 particle swarm optimization differential model speed vector stability
  • 相关文献

参考文献17

  • 1J.Kennedy,R.C.Eberhart.Particle swarm optimization.In:Proc.IEEE Int'l Conf.Neural Networks.Indianapolis,NJ:IEEE Service Center,1995.1942~ 1948
  • 2R.C.Eberhart,J.Kennedy.A new optimizer using particle swarm theory.In:Proc.6th Int'l Symposium on Micro Machine and Human Science.Indianapolis,NJ:IEEE Service Center,1995.39~43
  • 3J.Kennedy,R.C.Eberhart,Y.Shi.Swarm Intelligence.San Francisco:Morgan Kaufmann.2001
  • 4C.A.Coello,M.S.Lechuga.MOPSO:A proposal for multiple objective particle swarm optimization.In:Proc.IEEE Con.Evolutionary Computation.Indianapolis,NJ:IEEE Service Center,2002.151~160
  • 5A.P.Engelbrecht,A.Ismail.Training product unit neural networks.Stability and Control:Theory and Applications,1999,2(1):59~74
  • 6H.Yoshida,K.Kawata,Y.Fukuyama,et al.A particle swarm optimization for reactive power and voltage control considering voltage stability.In:Proc.Int' l.Conf.Intelligent System Application to Power Systems.Indianapolis,NJ:IEEE Service Center,1999.117~121
  • 7S.Naka,T-Grenji,T.Yura,et al.Practical distribution state estimation using hybrid particle swarm optimization.In:Proc.IEEE PES Winter Meeting.Indianapolis,NJ:IEEE Service Center,2001.134~ 141
  • 8Y.Shi,R.C.Eberhart.Particle swarm optimization with fuzzy adaptive inertia weight.In:Proc.Workshop on Particle Swarm Optimization.Indianapolis,NJ:IEEE Service Center,2001
  • 9M.Clerc.The swarm and the queen:Towards a deterministic and adaptive particle swarm optimization.In:Proc.Congress on Evolutionary Computation.Indianapolis,NJ:IEEE Service Center,1999.1951~1957
  • 10P.J.Angeline.Using selection to improve particle swarm optimization.In:Proc.IJCNN'99.Indianapolis,NJ:IEEE Service Center,1999.84~89

二级参考文献7

  • 1P N Suganthan. Particle swarm optimiser with neighbourhood operator. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1958~1962
  • 2E Ozcan, C Mohan. Particle swarm optimization: Surfing the waves. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1939~1944
  • 3M Clerc, J Kennedy. The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58~73
  • 4F Solis, R Wets. Minimization by random search techniques.Mathematics of Operations Research, 1981, 6(1 ): 19~ 30
  • 5F Van den Bergh. An analysis of particle swarm optimizers: [ Ph D dissertation]. Pretoria: University of Pretoria, 2001
  • 6王凌.智能优化算法及其应用.北京:清华大学出版社,2001( Wang Ling. Intelligent Optimization Algorithms with Applications( in Chinese) . Beijing: Tsinghua University Press,2001)
  • 7J Holland. Adaption in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 1975

共引文献160

同被引文献113

引证文献9

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部