期刊文献+

优势关系下模糊目标信息系统约简的辨识矩阵 被引量:9

Discernibility Matrix with Respect to Reduction Based on Dominance Relation in Fuzzy Decision Information System
下载PDF
导出
摘要 约简是知识获取的重要方法之一,基于等价关系的粗糙集约简理论的研究已比较深入,而优势关系下约简理论的研究还比较少。定义了模糊目标信息系统在优势关系下的5种属性约简,并且给出了它们的判定定理和可辨识矩阵。证明了辨识矩阵对应的辨识公式给出的解就是所求约简的全体.最后通过一个例子说明如何用辨识矩阵算法求属性约简。 Knowledge reduction based on rough set theory is one of the important methods of knowledge -acquisition. Comparatively speaking, the attribute reduction based on equivalence relation has been investigated in depth, however, there is less study of attribute reduction based on dominance relation, so, in the paper five kinds of knowledge reduction are defined. The judgment theorems and discernibility matrixes with respect to these reductions are established, from which the algorithms of discermibility matrix for finding these reductions are obtained. Finally, an example is given.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2006年第2期81-84,共4页 Journal of Air Force Engineering University(Natural Science Edition)
基金 国家自然科学基金资助项目(60273087) 北京市自然科学基金资助项目(4032009)
关键词 粗糙集 属性约简 优势关系 辨识矩阵 rough set attribute reduction dominance relation discernibility matrixes
  • 相关文献

参考文献6

  • 1Pawlak Z.Rough Sets:Theoretical Aspects of Reasoning About Data[M].Boston:Kluwer Academic Publishers,1991.
  • 2袁修久,张文修.模糊目标信息系统的属性约简[J].系统工程理论与实践,2004,24(5):116-120. 被引量:16
  • 3Greco S,Matarazzo B,Slowinski R.Rough Sets Theory for Multicriteria Decisionanalysis[J].European Journal of Operational Reasearch,2002,129:1-47.
  • 4Greco S,Matarazzo B,Slowinski R.Rough approximation by domaince relations[J].International Journal of Inteligent Systems,2002,17:153-171.
  • 5Banerjee M,Pal S k.Roughness of a Fuzzy Set[J].Information Sciences,1996,93:235-246.
  • 6安芹力,李安平.不协调决策表的属性约简模型及规则提取[J].空军工程大学学报(自然科学版),2005,6(3):88-91. 被引量:5

二级参考文献12

  • 1Pawlak Z. Rough sets: theoretical aspects of reasoning about data[M]. Boston: Kluwer Academic Publishers, 1991.
  • 2Skowron A, Rauszer C. The discernibility matrixes and functions in information systems[A].Slowinski R.Intelligent Decision Support, Handbook of Applications and Advances of Rough Sets Theory[C]. Dordrecht:Kluwer Academic Publishers,1992. 331-362.
  • 3Jelonek J, et al. Rough set reduction of attributes and their domains for neural networks[J]. Computational Intelligence, 1995,11(2):339-347.
  • 4Kryszkiewicz M. Comparative study of alternative type of knowledge reduction in inconsistent systems[J]. International Journal of Intelligent Systems, 2001,16:105-120.
  • 5Banerjee M, Pal M S K. Roughness of a fuzzy set[J]. Information Science,1992,45:157-160.
  • 6Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning About Data[M]. Boston: Kluwer Academic Publishers, 1991.
  • 7Ziarko W. Variable Precision Rough Set Model[J]. Journal of Computer and System Sciences, 1993,46(1):39-59.
  • 8Kryszkiewicz M. Comparative Studies of Alternative Type of Knowledge Reduction in Inconsistent Systems[J]. International Journal of Intelligent Systems, 2001, 16 : 105 - 120.
  • 9Quafatou M. α- RST: a Generalization of Rough Set Theory[J]. Information Sciences, 2000, 124:301 -316.
  • 10Beynon M. Reducts Within the Variable Precision Rough Sets Model: a Further Investigation [J]. European Journal of Operational Research, 2001, 134:592 -605.

共引文献19

同被引文献76

引证文献9

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部