期刊文献+

实时交通数据的噪声识别和消噪方法 被引量:20

Noise recognition and noise reduction of real-time traffic data
下载PDF
导出
摘要 以常用的交通数据———交通量时间序列的实测数据为例,给出多个噪声识别及消噪预处理的实验结果.为提高建模的准确度,采用模糊减法聚类对交叉口实测交通量进行噪声识别.对实测交通量采用奇异值分解的滤波方法进行除噪预处理,并通过训练径向基函数网络进行预测.与数据未经滤波直接训练网络相比,预测结果的平均绝对相对误差降低了3.31%.用小波变换对交通量数据进行消噪处理,即通过多分辨率的小波分解和重构来实现消噪.实验表明,若对原始交通量时间序列消噪后再建立预测模型,将获得更好的预测结果,这说明研究的噪声识别和消噪方法的可行性和有效性. Taking noise recognition and noise reduction of traffic volume time series which are commonly used traffic data as example, several experimental results are illustrated. In order to improve the accuracy of modeling, fuzzy subtraction clustering is employed to recognize the noise data hidden in traffic volume time series gathered in intersection; De-noise filter method based on single value decomposition is applied to preprocess traffic volume time series, and a radical basic function neural network is trained for prediction. The mean absolute relative error of the prediction is reduced by 3.31% compared to that of network trained with raw data without filter. Wavelet transform, i. e. multi-resolution decomposition and reconstruction is also used to reduce noise. These experiments indicate that the prediction model built with traffic volume time series after noise reduction can yield better results. It oroves the feasibility and validity of above mentioned approaches.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第2期322-325,共4页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(50378016) 江苏省教委自然科学基金资助项目(05KJB520056)
关键词 噪声识别 消噪 交通数据 小波分析 免疫算法 noise recognition noise reduction traffic measure data wavelet analysis immune algorithm
  • 相关文献

参考文献8

  • 1Han Jiawei, Kamber Micheline. Data mining: concepts and techniques [ M ]. Morgan: Morgan Kaufmann Publishers, 2001 : 52 - 103.
  • 2裴玉龙,马骥.实时交通数据的筛选与恢复研究[J].土木工程学报,2003,36(7):78-83. 被引量:31
  • 3简相超,郑君里.混沌和神经网络相结合预测短波通信频率参数[J].清华大学学报(自然科学版),2001,41(1):16-19. 被引量:30
  • 4Fang Haitao, Huang Deshuang. Noise reduction in lidar signal based on discrete wavelet transform [ J ]. Optics Communications, 2004, 38 (5) :67 - 76.
  • 5Ishida Y, Adachi N. Active noise control by an immune algorithm: adaptation in immune system as an evolution[ C ]//Proc IECE 96. Nagoya, Japan, 1996 : 150 - 153.
  • 6Ishida Y, Adachi N. An immune algorithm for multi-agent: application to adaptive noise neutralization [ C]//Proc IROS 96. Osaka, 1996 : 1739 - 1746.
  • 7Boll S F. Suppression of acoustic noise in speech using spectral subtraction [ J ]. IEEE Transactions Acoustics,Speech and Signal Processing, 1979, 27 ( 2 ) : 113 -120.
  • 8Gruden Stanislav, Zajc Baldomir. Using spectral subtraction for suppression of noise in speech signals with analog integrated circuits [ J ]. Analog Integrated Circuits and Signal Processing, 1999, 18 ( 2, 3 ) : 195 -207.

二级参考文献12

  • 1裴玉龙 等.高等级公路通行能力与运营管理研究[R].哈尔滨建筑大学,2000..
  • 2[1]Takens F. Detecting strange attractors in turbulence [A]. Dynamical Systems and Turbulence, Lecture Notes in Mathematics Vol. 898 [C]. Berlin: Springer-Verlag, 1981. 366~381.
  • 3[2]Casdagli M. Nonlinear prediction of chaotic time series [J]. Physica D, 1989, 35: 335~356.
  • 4[3]Cybenko G. Approximation by superposition of a single function [J]. Mathematics of Control, Signals and Systems, 1989, 2: 303~314.
  • 5[4]Takens F. On the numerical determination of the dimension of an attractor [A]. Dynamical Systems and Turbulence, Lecture Notes in Mathematics Vol. 898 [C]. Berlin: Springer-Verlag, 1981. 230241.
  • 6[5]Abarbanel D.I. Analysis of Observed Chaotic Data [M]. New York: Springer-Verlag, 1996.
  • 7Shawn Turner, Luke Albert, Byron Gajewski, William Eisele. Archived ITS Data Quality: Preliminary Analysis of San Antonio Transguide Data[C] . The 79^th annual meeting Transportation Research Board. Washington, D.C.2000:1-19.
  • 8Rod E. Turochy, Brian L. Smith. A New Prcedure for Detector Data Screening In Traffic Management Systems[C]. The 80^th annual meeting Transportation Research Board. Washington, D.C. 2001:1-19.
  • 9D. F. Cleghorm, F.L. Hall, D. Garbuio. Improved Data Screening Techniques for Freeway Traffic Management Systems[J] Transportation Research 1320.National Research Council. Washington D. C. 1991:17-23.
  • 10L. N. Jacobson, N. L. Nihan, J. D. Bender. Detecting Erroneous Loop Detector Data in a Freeway Traffic Management System[J]. Transportation Research Record 1287. National Research Council. Washington D. C. 1990:151-166.

共引文献58

同被引文献133

引证文献20

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部